APPy: Annotated Parallelism for Python on GPUs

Tong Zhou Jun Shirako Vivek Sarkar
Georgia Institute of Technology Georgia Institute of Technology Georgia Institute of Technology
USA USA USA
tz@gatech.edu shirako@gatech.edu vsarkar@gatech.edu

Abstract

GPUs are increasingly being used used to speed up Python
applications in the scientific computing and machine learn-
ing domains. Currently, the two common approaches to lever-
aging GPU acceleration in Python are 1) create a custom
native GPU kernel, and import it as a function that can be
called from Python; 2) use libraries such as CuPy, which
provides pre-defined GPU-implementation-backed tensor
operators. The first approach is very flexible but requires
tremendous manual effort to create a correct and high perfor-
mance GPU kernel. While the second approach dramatically
improves productivity, it is limited in its generality, as many
applications cannot be expressed purely using CuPy’s pre-
defined tensor operators. Additionally, redundant memory
access can often occur between adjacent tensor operators
due to the materialization of intermediate results. In this
work, we present APPy (Annotated Parallelism for Python),
which enables users to parallelize generic Python loops and
tensor expressions for execution on GPUs by adding simple
compiler directives (annotations) to Python code. Empirical
evaluation on 20 scientific computing kernels from the litera-
ture on a server with an AMD Ryzen 7 5800X 8-Core CPU and
an NVIDIA RTX 3090 GPU demonstrates that with simple
pragmas APPy is able to generate more efficient GPU code
and achieves significant geometric mean speedup relative to
CuPy (30X on average), and to three state-of-the-art Python
compilers, Numba (8.3x on average), DaCe-GPU (3.1X on
average) and JAX-GPU (18.8% on average).

CCS Concepts: « Software and its engineering — Source
code generation.

Keywords: GPUs, Python, compilers, programming model,
code generation

ACM Reference Format:

Tong Zhou, Jun Shirako, and Vivek Sarkar. 2024. APPy: Annotated
Parallelism for Python on GPUs. In Proceedings of the 33rd ACM
SIGPLAN International Conference on Compiler Construction (CC

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

CC 24, March 2-3, 2024, Edinburgh, United Kingdom

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0507-6/24/03
https://doi.org/10.1145/3640537.3641575

'24), March 2-3, 2024, Edinburgh, United Kingdom. ACM, New York,
NY, USA, 18 pages. https://doi.org/10.1145/3640537.3641575

1 Introduction

Python has gained increasing popularity due to its concise
and flexible language features and a rich ecosystem for vari-
ous application domains, such as computational science, data
science and machine learning. Programs in such domains
naturally exhibit abundant data parallelism, making them
amenable for GPU acceleration. Two common approaches to
accelerate Python programs on the GPU are 1) create a cus-
tom native GPU kernel, and import it as a function that can
be called from Python; 2) use libraries such as CuPy which
provides predefined GPU-implementation-backed tensor op-
erators. The first approach is very flexible, but programming
the GPU is notoriously difficult [4, 14, 17], due to the inherent
difficulty of parallel programming and the complex hierarchy
of modern GPU’s hardware parallelism and memory systems.
It generally requires significant expertise and manual effort
to create a correct high-performance GPU kernel. While
the library operator-based approach dramatically simplifies
programming and improves productivity, it is limited in its
generality, as many applications cannot be expressed using
only the pre-defined tensor operators (Listing 1 shows one
such example). Additionally, data locality remains a major
source of inefficiency for a sequence of operators, where the
intermediate results will need to be stored back to the main
memory and loaded again by the next operator, which can
slow down the overall execution. There exist tensor operator
compilers that are able to compile a sequence of operators
and generate fused GPU kernels [5, 15, 18], however, these
tools/techniques are often specific to machine learning, and
are not applicable to general Python programs with combi-
nations of explicit loops and generic tensor operators.

In this work, we present APPy: Annotated Parallelism for
Python, a Python-embedded parallel programming model
and JIT compiler that allows users to express their paral-
lel program using loops, or tensor expressions or a mix of
both, with annotated directives. Compared to existing GPU
programming models, APPy has two distinct advantages:

e In APPy, the user writes sequential loops targeting
at an abstract shared-memory multi-vector processor
machine that exposes two layers of parallelism: syn-
chronized vector processing (vectorization), and asyn-
chronous multi-threading (parallelization). Users can


https://orcid.org/0000-0003-2329-688X
https://orcid.org/0000-0002-7900-7680
https://orcid.org/0000-0002-3433-8830
https://doi.org/10.1145/3640537.3641575
https://doi.org/10.1145/3640537.3641575

CC ’24, March 2-3, 2024, Edinburgh, United Kingdom

1 def group_by_sum(X, labels, centroids, M, N):

2 for i in range(M):
3 label = labels[i]
4 centroids[label, :NJ] += X[i, :N]

Listing 1. A kernel from the K-Means algorithm that groups
rows from a matrix according to the label of each row. Such a
kernel involves indirect memory access, and the same pattern
cannot be expressed solely with tensor operators.

1 @appy.jit(auto_simd=True)
2 def group_by_sum(X, labels, centroids, M, N):

3 #pragma parallel for

4 for i in range(M):

5 label = labels[i]

6 #pragma atomic

7 centroids[label, :N] += X[i, :N]

Listing 2. Parallelized version of Listing 1. This implemen-
tation utilizes both loops (line 4-7) and tensor expressions
(line 7). Besides parallelizing the for loop, the compiler also
recognizes line 7 as a tensor expression, and will generate a
loop automatically for it with auto-vectorization. Directive
#pragma atomic indicates parallel reduction.

parallelize and vectorize a loop using OpenMP-like
directives, parallel for and simd, respectively.

e In addition to loops, users can also write tensor/array
expressions purely or combined with loops, and the
compiler will automatically convert these array ex-
pressions into optimized loops.

Programming for the abstract machine model simplifies
programming the GPU (the complex hierarchy of parallelism
in modern GPUs is hidden), and makes the program portable
for execution on any current or future hardware that fits
with the abstract model. In addition, compiling both loops
and tensor expressions makes APPy general enough to cover
a diverse spectrum of scientific programs and maintain high
productivity at the same time. Listing 2 shows the APPy par-
allelized version of kernel group_by_sum, shown in Listing
1.

In summary, we present the design of a loop-oriented
programming model targeting an abstract multi-vector pro-
cessor machine (section 3), as well as a tensor-oriented pro-
gramming model (section 4) with array expressions. We then
present an implementation of APPy and its code generation
algorithms (section 5). Finally, we evaluate the performance
of APPy on 20 scientific kernels (section 6), and show that by
adding simple pragmas users can get significant performance
improvement with APPy for scientific Python programs on
the GPU, compared to other state-of-the-art programming
tools and compilers.

Tong Zhou, Jun Shirako and Vivek Sarkar.

Figure 1. An illustration of the abstract machine model that
exposes two layers of parallelism: multi-processor paralleliza-
tion and vectorization within each processor.

2 Abstract Machine Model

In APPy, parallelism is specified against an abstract machine:
a multi-vector processor. Such a system consists of one or
more vector architecture processors [10] where each pro-
cessor is able to process either a scalar or a vector of data
in vector registers in a SIMD style, as illustrated in Fig. 1.
The maximum vector length is represented by a built-in vari-
able appy.MVL, and all vector operations must be of equal
or smaller length. One can apply lane-wise operations to a
vector register, such as basic mathematical unary and binary
operations, and cross-lane operations such as reductions. It
also provides an appy.where(condition, x, y) instruc-
tion to select values from two vectors based on a condition.
Besides the SIMD-level parallelism, the system consists of
multiple such vector processors and is capable of execut-
ing multiple vector instruction streams concurrently in a
MIMD style. The processors may communicate via shared
memory, e.g. updating a memory location atomically. In the
paper, we refer to the SIMD level parallelism as vectorization
and the MIMD level parallelism as parallelization. Maximum
parallelism is achieved when both parallelization and vector-
ization are utilized.

The programmer only needs to think about this abstract
machine model when programming with APPy, and the com-
piler automatically compiles user code to actual GPU code,
and handles the underlying complexity. We note that when
programming such abstract machine, one can use regular
control flow structures and array indexings and slicings, just
as in regular Python programming. The only thing that’s
specific to the abstract machine is about parallelism, e.g.
specifying a loop as parallel, and processing data in a vector
architecture style. The mathematical functions and opera-
tors applied on the data can be viewed as native instruc-
tions provided by the machine. Section 3 and 4 present the
programming interface of the loop-oriented model and the
tensor-oriented model respectively.



APPy: Annotated Parallelism for Python on GPUs

3 Loop-Oriented Programming Interface
3.1 Parallelization

A loop can be parallelized by being annotated with #pragma
parallel for, where the end of the loop acts as a synchro-
nization point. A vector addition example is shown in Listing
3. Each loop iteration is said to be assigned to a worker, and
the number of workers launched is always equal to the num-
ber of loop iterations, unless directive #pragma sequential
for is used, which launches only one worker that executes all
iterations sequentially, e.g. due to loop-carried dependences.
Each worker is scheduled to a single abstract processor, and
executes its instructions sequentially. A parallel for-loop
must be a for-range loop, and the number of loop iterations
must be known at kernel launch time, i.e. no dynamic paral-
lelism.

Tensors within the parallel region must already be a GPU
tensor (data reside in the GPU memory), e.g. created using
cupy/torch/jax with data on the device. Such libraries also
provide APIs to create a GPU tensor from a NumPy[9] array.

1 @appy.jit

2 def vector_add(A, B, C, N):
3 #pragma parallel for

4 for i in range(N):

5 C[i] = A[i] + B[i]

Listing 3. Parallelize a for loop with APPy via #pragma
parallel for. “#pragma .” is a regular comment in
Python, but will be parsed and treated as a directive by APPy.

3.2 Vectorization

Although #pragma parallel for parallelizes a loop, max-
imum parallelism is achieved when the loop body is also
vectorized, when applicable. APPy provides three ways to
achieve vectorization: 1) use tensor/array expressions (com-
piler generates a loop automatically, with more details in
section 4); 2) annotate a loop with the #pragma simd, which
divides the loop into smaller chunks, and assigns each chunk
to a worker; 3) manually strip-mine a loop and operate on
vectors of size appy.MVL or smaller. The last approach is
considered “assembly-level programming” of the abstract
machine, while the first two approaches rely on the compiler
to generate “assembly code” (strip-mined loops). To handle
arbitrary sized input, APPy provides a convenient built-in
function appy.vidx(i, step, bound=N) to create a vec-
tor of indices that start from i and are bounded by N, with
maximum length step.

Listing 4 shows the APPy implementations of vector addi-
tion and sparse matrix vector multiplication (SpMV) using
parallel for and simd directive combined to achieve max-
imum parallelism. As with the parallel for directive, the
simd directive relies on the programmer to check for depen-
dences and guarantee correctness.

CC ’24, March 2-3, 2024, Edinburgh, United Kingdom

A loop that is not applicable for parallelization may be
vectorizable. One example is the j loop in the SpMV example,
where it has dynamic loop bounds.

1 @appy.jit

2 def vector_add(A, B, C, N):

3 #pragma parallel for simd

4 for i in range(N):

5 C[il = A[i] + B[i]

6

7 @appy.jit

8 def spmv(A_row, A_col, A_val, x, y, N):
9 #pragma parallel for

10 for i in range(N - 1):

11 y[il = 0.0

12 #pragma simd

13 for j in range(A_row[i], A_row[1+i]):
14 col = A_col[j]

15 y[i] += A_val[j] * x[col]

Listing 4. Best performance practice is to utilize both paral-
lelization (via parallel for) and vectorization (via simd).

3.3 Data Sharing

APPy does not require the programmer to manually specify
whether each variable is private or shared. Instead, it enforces
syntactical difference between array and non-array variables,
and use simple rules to infer the scope of the variables. Ar-
ray variables are always followed by a square bracket, such
as A[vi], and the rest are non-array variables'. Array vari-
ables inside the parallel region are always considered shared
(and their data reside in the global memory of the GPU).
Non-array variables defined within the parallel region are
considered private to each worker. Read-Only non-array
variables are shared. APPy prohibits multiple reaching defi-
nitions from both inside and outside the parallel region of
a non-array variable, which prevents writing into a shared
non-array variable. To achieve such effects, the idiom is make
the variable an array of size 1 (thus it has a global scope).
An example is parallel reduction into a scalar, as shown in
Listing 5.

3.4 Synchronization

The only synchronization across workers (loop iterations)
supported is atomically updating a memory location. This
can be achieved by either annotating a statement with com-
piler directive #pragma atomic or by using “assembly-level”
programming of the abstract machine via built-in instruction
appy . atomic_<op>. Note that within a worker, no synchro-
nization is necessary even if it works on multiple elements.

These non-array variables act like vector registers in vector architecture,
so they are not called “scalars”.



CC ’24, March 2-3, 2024, Edinburgh, United Kingdom

Tong Zhou, Jun Shirako and Vivek Sarkar.

1 @appy.jit

2 def vector_sum(A, s, N):

3 #pragma parallel for simd
4 for i in range(N):

5 #pragma atomic

6 s[0] += A[i]

Listing 5. Parallel reduction idiom in APPy. The reduction
variable is an array of size 1. Directive simd divides the
loop into smaller chunks. Each worker gets one chunk, and
performs local reduction (SIMD capability is utlized). Finally
each worker performs an atomic update to the final sum.

4 Tensor-Oriented Programming Interface

In addition to loops, APPy also allows users to use ten-
sor/array expressions and the tensors can have arbitrary size.
This often results in more natural and succinct program com-
pared to the loop oriented version. Listing 6 shows a generic
implementation of the softmax activation function[8], a fun-
damental building block of machine learning, using loops
only and loops combined with tensor expressions respec-
tively. As can be seen, to perform a max or a sum reduction
on a row, the generic model must create a loop that works
on a limited amount of elements at a time. In contrast, the
tensor-oriented model allows the user to directly work with
tensors of arbitrary size and dimensions, where the compiler
automatically converts the tensor expressions into explicit
loops. To disambiguate, we use the term “tensor/array as-
signment” to refer to operations performed on tensors of
arbitrary size (as a high-level programming notation), and
use the term “ vector statement” to refer to operations that
can be directly executed by the abstract machine model, i.e.
the size of the vector is up to maximum vector length of the
machine.

The tensor-oriented model works by programming in and
annotating tensor expressions. However the tensor expres-
sion must be expressed in sliced index notation before it can
be annotated.

4.1 Sliced Index Notation

We introduce sliced index notation as a form of tensor expres-
sion that simplifies compiler transformations while maintain-
ing legitimacy as Python/NumPy syntax (no domain-specific
language is used). In sliced index notation, each dimension
of every tensor must be expressed as a slice with at least
the upper bound explicitly specified. This notation draws
inspiration from the Einstein summation convention [23],
extended to support operations beyond multiplication and
addition. Here are some examples:
e Matrix addition: C[:M, :NI = A[:M, :N] + B[:M, :N]
o Row-wise summation: B[ :M] = sum(A[:M, :N], axis=1)
e Broadcast: C[:M, :N] = A[:M, None] + B[None, :N]
e Transpose: B[:M, :N] = transpose(AL:N, :MI)

1 @jit

2 def softmax_loop_oriented(a, b, M, N):
3 #pragma parallel for

4 for i in range(M):

5 m = float('-inf")

6 #pragma simd

7 for j in range(N):

8 m = maximum(m, ali,jl)

9

10 s =0.0

1 #pragma simd

12 for j in range(N):

13 s += exp(ali,j]l - m)

14

15 #pragma simd

16 for j in range(N):

17 b[i,j]l = exp(ali,jl - m) /s

19 @jit(auto_simd=True)
20 def softmax_tensor_oriented(a, b, M, N):

21 #pragma parallel for

22 for i in range(M):

23 m = max(ali,:N]1)

24 s = sum(exp(ali,:N] - m))

25 b[i,:N] = exp(ali,:N] - m) / s

Listing 6. Two equivalent implementations of generic soft-
max using loops only and loops combined with tensor ex-
pressions respectively. The APPy compiler automatically
converts tensor expressions into explicit loops with vector-
ization.

e Stencil: B[1:M-1, 1:N-11 = 0.2 * (A[1:M-1, 1:N-1]
+ ALT:M=1, :N-2] + A[1:M-1, 2:N] + ...)

The sliced index notation requires the user to define a
variable (referred to as a dimension variable) for each unique
dimension within the expression, e.g. M and N. The expres-
sion is then rewritten to utilize slicings, such as “:M” to rep-
resent dimensions in every tensor. A scalar dimension can be
denoted by a scalar index. It’s crucial to note that distinct di-
mensions must be represented using different variables, even
if their runtime values are identical, as in the case of a square
matrix. Furthermore, tensor assignments can reference dif-
ferent slices of the same dimension, provided that the lengths
of the slices are consistent, e.g. in stencil computations.

The tensor-oriented model supports only three classes of
tensor operations: element-wise (both unary and binary),
broadcast, and reduction operations (all examples above be-
long to these categories). Operations that don’t belong to
these categories, such as sorting, squeezing (removing zeros
and compacting), matrix inversion etc are not supported.

4.2 Tensor-Oriented Pragmas

A tensor expression in sliced index notation can be annotated.
The annotation process goes by enumerating every distinct
dimension slice in the expression, and optionally specifying a



APPy: Annotated Parallelism for Python on GPUs

list of properties for it?. The syntax is {slice}=>{properties},

and the following properties are currently supported (multi-
ple properties are comma-separated):

e parallel: the dimension can be parallelized, i.e. trans-
lated to a parallel for loop. The default value is False.

e simd: the dimension can be executed in a SIMD fashion.
The default value is False.

e reduction/reduce: the dimension is reduced. The de-
fault value is False.

e le(constant): indicate the dimension is less or equal
than a small constant, which may enable more opti-
mizations, such as caching a small tensor in registers.

The tensor oriented model also comes with a new com-
piler option auto_simd, which automatically adds a simd
property to the last dimension. This transformation is always
legal due to the vectorized semantics of tensor expressions.
Listing 7 shows example pragmas used for gesummv and
jacobi_2d from polybench. Note that the order in which
the slices appear in the pragma (from left to right) determines
the loop order of the generated nested loop. For instance, an-
notation 1:M-1=>parallel 1:N-1=>parallel would imply
that 1:M-1 corresponds to the outer loop and 1:N-1 corre-
sponds to the inner loop.

1 @appy.jit(auto_simd=True)

2 def gesummv(alpha, beta, A, B, x, y, tmp, M, N):
3 #pragma :M=>parallel :N=>reduction(sum:y)

4 y[:M] = mv(alpha * A[:M, :NJ, x[:N1)

5 #pragma :M=>parallel :N=>reduction(sum:tmp)
6 tmp[:M] = mv(beta * B[:M, :N], x[:NI)
7 #pragma :M=>parallel
8 y[:M] += tmp[:M]
9

10 @appy.jit(auto_simd=True)
11 def jacobi_2d_one_iteration(A, B, M, N):

12 #pragma 1:M-1=>parallel 1:N-1=>parallel
13 BL1:M-1, 1:N-1]1 = 0.2 = (A[1:M-1, 1:N-11 + A[1:M-1, :N-2] +
14 ALT:M-1, 2:N] + A[2:M, 1:N-1]1 + A[0:M-2, 1:N-11)
15 #pragma 1:M-1=>parallel 1:N-1=>parallel
16 ALT:M-1, 1:N-1]1 = 0.2 = (B[1:M-1, 1:N-1] + B[1:M-1, :N-2] +
17 BL1:M-1, 2:N] + B[2:M, 1:N-1] + B[0:M-2, 1:N-11)

Listing 7. Annotated version of gesummv and jacobi_2d, a
linear algebra kernel and a stencil kernel from polybench.
Within each tensor assignment statement, operator fusion
will be performed automatically during code generation to
improve locality.

5 Implementation Overview

The APPy compiler first performs a sequence of high-level
analysis and transformations that rewrite the input program

2When the statement has only one dimension, the annotation can be skipped
if all properties have their default values.

CC ’24, March 2-3, 2024, Edinburgh, United Kingdom

to “assembly-level” APPy code targeting the abstract multi-
vector processor machine, where the program loads and pro-
cesses data in strip-mined loops and “vector registers”. Then
it compiles this “assembly code” to actual GPU code that
can run on the GPU. Specifically, APPy generates a Triton
kernel[24] and its corresponding host code for each top-level
parallel for-loop. The overall compilation flow is described
in Alg. 1. For simplicity, we use code examples below to
highlight the key points related to these transformations.

Algorithm 1 Top-level compilation process. func is the
function object to be compiled. A new function is returned.

1: function CODEGEN(func)

2 ast « getAST(func)

3 m «— newModule()

4 ast < HIGHLEVELTRANSFORM(ast)

5 for node in depth-first-traversal of ast do

6 if node is a top-level parallel for-loop then
7 devFunc < GENDEVICECODE(node)

8 hostCode «— GENHosTCODE(node)

9

m.body.append(devFunc)
10: > This replacement modifies ast in-place
11 replace node with hostCode
12: append ast to m, dynamically load module m and

_ return the new function from m.

5.1 High-Level APPy To “Assembly” APPy
Transformation

In the interest of brevity, we highlight a few key transforma-
tions in this section using code examples.

5.1.1 Creating Temporary Arrays. In a tensor assign-
ment, if the tensor to be stored also appears on the right hand
side with non-identical slices, APPy creates a new temporary
array and splits the original statement into two assignments,
where the computed values are first stored in a temporary
array (first assignment) and then stored in the final desti-
nation (second assignment) to ensure the correctness when
generating a loop from the tensor expression®. Listing 2b
shows the result of the transformation from 2a.

5.1.2 Inserting Synchronizations. APPy maps each vec-
tor statement to a thread block for flexibility and perfor-
mance consideration. However, a thread block does not natu-
rally have a vectorized execution semantic and may contain
threads/warps that execute asynchronously. Therefore, APPy
inserts synchronization statement after certain memory op-
erations to ensure the sequential execution of the vector
statements.

When inserting synchronizations, APPy performs an opti-
mization specific to its programming model: synchronizations

3This approach could be overly conservative, and some of the rewrites can
be skipped with more advanced dependence analysis available.



CC ’24, March 2-3, 2024, Edinburgh, United Kingdom

1 #pragma parallel for

2 for i in range(M):

3 #pragma 1:N=>simd

4 A[i, 1:N] = 0.5 = (A[i, :N-11 + B[i, :N-11)

(a) Original input program using a combination of loop and
tensor expressions.

1 tmp = empty_like(A)
2 #pragma parallel for
3 for i in range(M):

4 #pragma 1:N=>simd

5 tmp[i, 1:N] = 0.5 = (A[i, :N-1] + B[i, :N-11)
6 #pragma 1:N=>simd

7 A[i, 1:NI = tmp[i, 1:N]

(b) Rewrite and split the array assignment if in the original as-
signment, the tensor to be stored also appears on the right hand
side with a different slice. This ensures correct code generation
when the array assignment is converted to a loop.

1 tmp = empty_like(A)

2 #pragma parallel for

3 for i in range(M):

4 #pragma 1:N=>simd

tmpli, 1:N] = 0.5 » (A[i, :N-1] + B[i, :N-11)
appy . syncthreads ()

#pragma 1:N=>simd

ALi, 1:N] = tmp[i, 1:N]

appy . syncthreads()

© ® N o W

(c) Insert thread synchronizations after memory operations to
ensure correct execution when vector statements are mapped
to multiple asynchronously executing threads. Line 6 and 9 will
be translated to a call equivalent to __syncthreads in CUDA
during the backend code generation.

1 tmp = empty_like(A)

2 #pragma parallel for

3 for i in range(M):

for _i@ in range(1, N, appy.MVL):

5 _v@ = appy.vidx(_i@, appy.MVL, N)

6 tmp[i, _v@] = 0.5 = (A[i, _v@-1] + B[i, _vo-1])
7 appy . syncthreads()
8
9

S

for _i1 in range(1, N, appy.MVL):
_vl = appy.vidx(_i1, appy.MVL, N)
10 Ali, _v1] = tmp[i, _v1]
11 appy . syncthreads()

(d) Each tensor assignment is converted to a loop by the com-
piler. This code is ready to be converted to the backend code.

Figure 2. Some key steps of the high-level transformations
using the same example.

within loops generated from element-wise and broadcast tensor
assignments are unnecessary. Therefore, at code generation
time, synchronizations are inserted before tensor assign-
ments are converted to loops. Listing 2c shows the code state
after inserting synchronizations.

5.1.3 Lowering Tensor Assignments To Loops. A ten-
sor assignment statement is converted to a loop nest by the
compiler. An index variable and a loop is created for each
unique dimension, and the slicings in the original statement

Tong Zhou, Jun Shirako and Vivek Sarkar.

are replaced by these new index variables. The depth of the
loop nest equals the number of unique dimensions in the
tensor assignment, with the original statement placed in the
innermost loop. Listing 2d shows the transformation from
2¢.

5.14 Reduction-Bounded Operator Fusion. When con-
verting a tensor expression into loops, the compiler auto-
matically performs what we call reduction-bounded operator
fusion. This type of fusion fuses a sequence of element-wise
operators and stops when a reduction operator is encoun-
tered, which creates a fusion boundary. The reduction op-
erator itself will be the last operator in this fusible group.
Listing 8 shows the compiler-generated code for a generic
matrix vector multiplication with operator fusion.

1 ## Before transformation

2 @appy. jit(auto_simd=True)

3 def kernel(alpha, A, x):

4 M, N = A.shape

#pragma :M=>parallel :N=>reduction(sum:y)
y[:M] = mv(alpha = A[:M, :N1, x[:N1)

## After transformation
@appy.jit

10 def _generated(alpha, A, x):
11 M, N = A.shape

© ® N o o«

12 #pragma parallel for

13 for _i@ in range(0, M, 1):

14 y[_ie] = 0.0

15 for _i1 in range(@, N, appy.MVL):

16 _vl = appy.vidx(_i1, appy.MVL, N)

17 y[_i@] += sum(alpha * A[_i@, _v1] * x[_v1])

Listing 8. User code and compiler generated code for matrix
vector multiplication. The last line indicates the operator
fusion (the intermediate results are never materialized).

Reduction-Bounded fusion is illustrated in Fig. 3, where
each circle represents a data element, and each arrow signi-
fies an operation as well as a data dependence. A horizontal
arrow represents an element-wise operation, while a gather
arrow represents a reduction operation, and a scatter ar-
row represents a broadcast operation. The same operation
is applied vertically to different elements. op1 and op4 are
element-wise operations, while op2 and op3 are reduction
and broadcast operations, respectively. Different colors rep-
resent the worker assignments of the data elements.

In this figure, op1 and op2 can be safely fused for each
worker, as can op3 and op4. Fusing op1 and op2 means that
the same data element is immediately being applied op2 after
op1, without waiting for all data elements to have undergone
op1. However, fusing op3 together with op1 and op2 would
not be legal since op3 requires op2 to be completed on all
data elements first.



APPy: Annotated Parallelism for Python on GPUs

Opt Op4

Figure 3. Reduction-Bounded fusion illustration. Vertically,
workers (denoted by different colors) can work on their own
data elements concurrently, and horizontally a sequence of
operations (such as op1 and op2) can be fused, until a reduc-
tion operation like op2 is encountered, which ends a fusible
group (itself included) and demands thread synchronizations
(the dotted line).

Figure 3 also implies that when a worker is mapped to
asynchronously executing hardware threads, the threads can
work on their data elements concurrently, and only need to
synchronize when a reduction operator is encountered.

5.2 Triton Background

After all the passes in the high-level transformation phase
are performed, the code is now at “assembly” level and is
ready to be lowered to the backend code. In our implemen-
tation we choose to generate Triton code instead of CUDA
or OpenCL code because its programming model matches
well with our abstract machine model, and simplifies our
implementation. Nonetheless it’s totally possible to generate
CUDA or OpenCL from APPy.

First, we provide a brief introduction to the Triton lan-
guage and compiler before getting into generating Triton
code. Triton [24] is a GPU programming language and com-
piler that aims to make GPU programming more produc-
tive than CUDA. Based on Python, Triton provides a single-
program-multiple-data (SPMD) programming interface, where
the user specifies the behavior for a thread block as a whole,
instead of individual threads, and the Triton compiler au-
tomatically distributes work across threads and generates
SIMT-style code from it. This paradigm simplifies thread-
block scope collective operations such as reduction, where
the programmer just makes a high-level API call. Listing 9
illustrates a Triton kernel that performs a dot product of
two vectors. The function kernel is the launch function that
specifies the block size and grid size, and invokes _kernel
(lines 15-16). Function _kernel is the Triton GPU kernel
decorated with triton. jit, which the Triton compiler will
JIT-compile to native code on the target machine, e.g. PTX

CC ’24, March 2-3, 2024, Edinburgh, United Kingdom

code for NVIDIA hardware. Within the kernel, t1. load loads
a block of data from global memory to registers that will
be processed by the thread block. The block size BN is user-
determined. Line 10 performs a local dot product (data are
in registers) to get the partial results, and line 11 performs a
global reduction via t1.atomic_add. It’s worth noting that
Triton (at present) still requires the programmer to insert
thread synchronizations* if two statements might have cross-
thread data dependencies.

1 import triton

2 import triton.language as tl

3

4 @triton.jit

5 def _kernel(a, b, ¢, N, BN: tl.constexpr):

6 i = tl.program_id(@) * BN

7 offsets = i + tl.arange(BN)

8 a_block = tl.load(a + offsets, mask=offsets<N)
9 b_block = tl.load(b + offsets, mask=offsets<N)
10 c_val = tl.sum(a_block * b_block)

11 tl.atomic_add(c, c_val)

13 def kernel(a, b, c, N):

14 BN = 512 # User-determined data block size
15 grid = (N + BN - 1) // BN
16 _kernell[gridl(a, b, c, N, BN)

Listing 9. A Triton kernel that performs a dot product of
vector a and b. The result is stored in c. _kernel is the Triton
GPU kernel, launched at line 16.

5.3 “Assembly” APPy to Triton Code Generation

When generating the backend code, for each top-level paral-
lel for-loop, a Triton kernel function is generated, together
with its corresponding host code. The parallel for-loop can
be a nested parallel loop, in which case a multi-dimensional
thread block will be launched. The host code part includes
creating an N-dimensional grid, where “N” is the nesting
level of #pragma parallel for, and launching the ker-
nel by passing the actual arguments, including the block
size (appy . MVL), which is automatically determined by APPy
given a hardware platform and a kernel. For our implemen-
tation and evaluation on an NVIDIA GPU, APPy’s backend
code includes some auto-tuning code that automatically se-
lects the best appy .MVL value (that lead to the best runtime)
from 4 possible options, 128, 256, 512 and 1024, for all applica-
ble kernels. The best block size is cached for later invocations
of the kernel. To generate a device function, an empty func-
tion decorated with @triton.jit is first created. The code
generator first inserts the program_id statements into the
function body, and then it traverses the loop body of the loop
being compiled, converts the statements into corresponding
Triton statements, and insert these Triton statements into

4 Analogous to __syncthreads() in CUDA.



CC ’24, March 2-3, 2024, Edinburgh, United Kingdom

the kernel function body. This includes converting array
indexings into Triton load and store statements etc.

6 Performance Evaluation

We compare APPy’s performance with five other popular
frameworks: NumPy (CPU baseline), Numba (CPU compiler)
[13], CuPy (GPU baseline) [16], JAX-GPU (GPU compiler)
[6] and DaCe-GPU (GPU compiler) [26]. We evaluate the
performance of APPy using 20 kernels from the NPBench
benchmarking framework [25]. Specifically, our evaluation
encompasses all benchmarks in NPBench that are under
40 lines of code, have parallelism present, do not use any
data types/functions unsupported by APPy, and pass the
validation test, which resulted in a set of 20 kernels.

NPBench comprises a set of NumPy code samples rep-
resenting a wide variety of HPC applications and includes
benchmarking tools to compare the performance of different
NumPy-accelerating compilers (e.g. Numba etc). For each
application, NPBench has a baseline NumPy implementation
written in idiomatic Python/NumPy, which may use explicit
loops, tensor operators, or both. Additionally, it includes
implementations derived from the NumPy version using var-
ious compiler frameworks. As of now, it already includes
compiler frameworks such as Numba and DaCe [26] (with
both CPU and GPU backends), and we added APPy and JAX
as additional frameworks.

6.1 Code Adaptation

Table 1 uses source lines of code (SLOC) as a metric to mea-
sure how much code adaptation is required for each frame-
work. The SLOC count is obtained using the pygount tool.
The code adaptation process for each framework is then
summarized in the following sections.

6.1.1 Code Adaptation for APPy. The APPy versions
of these kernels are derived from the baseline NumPy ver-
sion with three modifications in most cases: 1) the tensor
expressions are updated to use sliced index notation (e.g.
A[:] + B[:] becomes A[:N] + B[:NJ); 2) each parallel
loop and tensor expression is annotated with pragmas, and
the le clause (small tensor optimizations) is used when ap-
plicable; 3) the kernel function is decorated with @appy. jit.
We do not annotate matmul operators used in the kernels
and delegate them to library implementations.

For three kernels (softmax, spmv and azimint_naive),
we also rewrite some tensor operators using loops due to
limitations of our tensor-oriented model (e.g. multiple reduc-
tion operators will not be fused with our current operator
fusion approach but a loop-based implementation would fuse
them). Additionally, reduction sub-expressions are extracted
out to form separate statements due to current implementa-
tion limitations, which caused a slight increase in additional
lines of code for benchmarks such as gesummv and cholesky
in table 1.

Tong Zhou, Jun Shirako and Vivek Sarkar.

6.1.2 Code Adaptation for JAX. Due to the language de-
sign constraints of JAX, creating the JAX versions of the ker-
nels requires more significant changes to the original NumPy
versions compared to other frameworks. These changes arise
from three major JAX restrictions: 1) in-place array updates
must use the at idiom; 2) control flows, such as for loops,
must be rewritten to structured forms using jax. lax.fori_-
loop. Otherwise, the compilation would take too long (e.g.,
hours for large loops) because JAX unrolls Python loops by
default; 3) array slices with dynamic sizes are not supported.
When creating the JAX versions of the kernels, we attempt
to convert as many Python loops as possible to JAX struc-
tured loops and rewrite array slices with dynamic sizes using
where if the slice size depends on the loop index variable.

6.1.3 Code Adaptation for Other Frameworks. Code
adaptation for CuPy is the most straightforward, as it serves
as an almost seamless drop-in replacement for NumPy. The
only necessary change is to replace import numpy as np
with import cupy as np. For Numba, two changes are
required: 1) the kernel function should be decorated with
@numba. jit; 2) if a loop can be parallelized, modify it to use
numba.prange instead of range. Similar to Numba, DaCe
kernels are also decorated with @dace.program for JIT com-
pilation. Additionally, DaCe mandates that function argu-
ments be type-annotated, including their shapes, which must
be either integer constants or symbols, e.g. dace. float64[N,
M]. These shape variables are defined similarly to APPy di-
mension variables. Notably, DaCe will automatically discover
for loops that can be parallelized.

6.2 Performance Results

We evaluate the performance using the NPBench’s bench-
marking functionality, with the same input sizes as in the
NPBench paper [25], such that each benchmark is run for
approximately 1 second. By default, NPBench runs each
benchmark 10 times and reports the median runtime®. The
test machine used for results presented in this subsection is
a Ryzen 7 5800X 8-Core CPU and a RTX 3090 GPU®. The op-
erating system is Ubuntu 18.04.6 LTS and the CUDA version
is 12.1. We use CPython version 3.9.16 as part of an Ana-
conda 3 environment. The NumPy version is 1.26.2, Numba
version is 0.58.1, CuPy version is 12.2.0, JAX version is 0.4.23,
DaCe version is 0.14.4 and Triton version is 2.1.0 (installed
via torch 2.1.2).

Fig. 4 shows the performance results. The NumPy column
on the right shows the absolute execution time, while the
columns for the other frameworks show their speedup (up
arrow) or slowdown (down arrow) relative to NumPy. On av-
erage (using geometric means), APPy achieves 3.1X speedup
over DaCe-GPU (up to 11x), 18.8% speedup over JAX (with

>One exception is that kernel gemver is run only 8 times with JAX due to
an out-of-memory error when attempting to run it 10 times.
®Additional results using different hardware are provided in section 6.3.



APPy: Annotated Parallelism for Python on GPUs

CC ’24, March 2-3, 2024, Edinburgh, United Kingdom

Contains Tensor

Benchmark Contains Loops . APPy DaCe JAX CuPy Numba NumPy
Expressions

azimnaiv Yes (P) Yes +8 +8 +3 40 +2 11
cholesky Yes Yes +7 +3 +7 40 +2 10
covariance Yes (P) Yes +7 +4 +8  +0 +2 8
fdtd_2d Yes Yes +5 +4 +1 +0 +2 9
floyd_warshall Yes Yes +3 +3 +5 40 +3 5
gemm No Yes +4 +4 +1  +1 +2 4
gemver No Yes +7 +6 +2  +0 +2 6
gesummyv No Yes +10 +4 +1 +0 +2 3
go_fast Yes (P) No +4 +3 +1 +0 +2 6
gramschmidt  Yes (P) Yes +5 +3 +15  +0 +2 12
hdiff No Yes +8 +3 +2 40 +2 22
heat_3d Yes Yes +4 +3 +1 +0 +2 18
jacobi_2d Yes Yes +4 +3 +1 40 +2 8
softmax No Yes +11 +9 +2 +0 +5 6
spmv Yes (P) Yes +7 +8 +9 40 +2 8
symm Yes (P) Yes +5 +3 +16  +0 +1 10
syr2k Yes (P) Yes +6 +4 +4 40 +2 8
syrk Yes (P) Yes +6 +4 +4 40 +2 7
trisolv Yes Yes +5 +3 +5 +0 +2 5
trmm Yes (P) Yes +5 +3 +12 40 +2 7

Table 1. Measure the amount of code adaptation using source lines of code (SLOC) as a metric. The column labeled “Contains
Loops” indicates whether the benchmark contains explicit loops in its NumPy reference implementation, and “(P)” denotes
that at least one loop is parallelizable. The column “Contains Tensor Expressions” indicates whether the NumPy reference
implementation employs any (non-scalar) tensor expressions. The “NumPy” column displays the number of lines of code for
the benchmark, while all other columns indicate their additional SLOC relative to the NumPy version. Note that pragma lines

are included in the SLOC count for APPy.

JIT) and 30X speedup over CuPy. Comparing to the CPU
frameworks, APPy achieves 30X speedup over NumPy, and
8.3% speedup over Numba.

6.2.1 Comparison with DaCe-GPU. Upon inspecting
the generated CUDA code from DaCe, we identified two po-
tential inefficiencies: 1) a sequential loop is generated when
writing to an array slice, for instance, C[i,:i+1] = ...;
2) parallel reduction is not supported, which is utilized in
the kernels go_fast and azimint_naive. APPy, with appro-
priate annotations, effectively parallelizes both cases. For a
subset of benchmarks exclusively using operators, such as
gesummy, floyd_warshall, and gemver, DaCe is also slower
than APPy. This difference may be due to the fact that APPy
is more effective in fusing these operator patterns. Moreover,
in benchmarks like softmax and cholesky, their APPy im-
plementations benefit from the le pragma, leveraging prior
knowledge of small dimensions to enhance data locality. On
the other hand, DaCe and APPy exhibit comparable perfor-
mance for stencil kernels, including jacobi_2d, heat_3d,
and hdiff.

6.2.2 Comparison with JAX-GPU. JAX is significantly
slower compared to APPy or DaCe for kernels written with
explicit loops that can be parallelized, such as covariance,
npgofast, spmv, symm, and syrk, among others. In JAX, a
fori_loop is compiled but not parallelized, even if it is par-
allelizable. For a number of benchmarks written solely using
operators, JAX is even slower than CuPy, despite the fact
that it compiles and fuses operators. This could be due to
sub-optimal code generation of the fused operators in JAX.
In the case of spmv, JAX is > 100X slower than the NumPy
baseline because the original NumPy reference implemen-
tation uses arrays of dynamic shapes (depending on the
row), which has to be rewritten to an implementation us-
ing where operators in JAX since dynamic shapes are not
supported by JAX. Further, the where based implementa-
tion has to load the entire data and column arrays in ev-
ery iteration and then select only a few elements. This ap-
proach is highly inefficient and fails to leverage the advan-
tages of sparse representations. However, JAX demonstrates
significant performance improvement over all other frame-
works for azimnaiv. This could be attributed to the fact



CC ’24, March 2-3, 2024, Edinburgh, United Kingdom

Tota! NEEREREEN T T NED —

azimnaiv i p ) . 14.200 0.11ls
cholesky ) 117.7 045s

covarian 49.24 ms -

fdtd_2d 243s
floydwar 1.60s -
gemm 90.60 ms
gemver 0.85s
gesummy 031ls A
gramschm ’ 15.7 2 0.44s
5]
< B 2
] hdiff 1113.0 2 036s -
€
S
S heat3d 1352.0 %) 128.90 5.47s A
o
jacobi2d 1176.0 J 3.14s A
npgofast 12.8 d 2@ 0.15s
softmax 0.70s

spmv 8 ) 132.40 032s
symm ) 115.7 3.76s
syr2k 5) 16.00) 6.18s -

syrk ) 1370 2.36s A
57.29 ms |

trisolv

trmm 1.59s -

jax

cupy
numba
numpy

Figure 4. Performance results on a set of NPBench bench-
marks. All frameworks show their speedup relative to
NumPy, except NumPy itself shows its absolute execution
time in seconds. Up arrows indicate performance improve-
ment, and down arrows indicate performance slowdown.

that azimnaiv presents additional optimization opportuni-
ties when the outer loop is unrolled’, for instance, allowing
for the saving of re-computation of a sub-expression.

6.2.3 Comparison with CuPy. The CuPy versions of the
kernels often still require explicit loops, which executes se-
quentially in the Python interpreter, while with APPy such
loops are parallelized when possible. One might wonder why
CuPy is even slower than NumPy, which has identical code
but uses CPU-based implementations instead of GPU-based

7JAX unrolls Python loops by default.

Tong Zhou, Jun Shirako and Vivek Sarkar.

implementations. This is because each loop iteration typi-
cally processes relatively small sized data in our input setting.
Due to the small data size, processing them on the CPU isn’t
necessarily slower than on the GPU. When the program
can be entirely expressed using tensor operators, such as in
case of gemm, gemver, gesummv, and softmax, CuPy typically
achieves significant speedup over NumPy.

6.2.4 Comparison with NumPy and Numba. GPUs are
known to be more efficient than CPUs when it comes to data
parallelism. NumPy runs the code sequentially in the Python
interpreter, although each operator is backed by an optimized
native code implementation. Still it’s limited by the sequen-
tial execution and the interpreter overhead. Compared to
NumPy, Numba applies Python-to-native-code compilation,
automatic optimizations and parallelization (with prange),
but it parallelizes the code only on the CPU. In contrast,
APPy compiles the kernel to native GPU execution.

However, we note that for trisolv, APPy is significantly
slower than NumPy (3.1x slower) and Numba. In fact, all
the frameworks employ the same parallelization strategy for
trisolyv, i.e. the outer loop is sequentialized, and the loop
body contains a dot product that exhibits parallelism and
gets parallelized. In case of APPy, the outer loop is annotated
with #pragma sequential for to ensure that only one
worker thread is launched. This limited parallelism within
one worker thread could be one of the reasons why APPy is
3.1x slower than NumPy baseline for trisolv.

6.3 Additional Performance Results

For completeness, we performed an additional performance
evaluation on a different machine consisting of an AMD
EPYC 7502 32-Core CPU and an NVIDIA A100-PCIE-40GB
GPU. The package versions and benchmarking methodolo-
gies are identical with the previous evaluation reported in
Section 6.2. DaCe-GPU is excluded from this additional eval-
uation due to compilation errors on this platform. There is
also one data point missing for Numba due to a runtime error
that was encountered in that case.

Fig. 5 shows the performance results. In general, the rel-
ative speedup f the GPU frameworks over the CPU frame-
works roughly doubles compared to the results in Fig. 4. No-
tably, JAX has improved performance over APPy for floydwar,
fdtd_2d and heat3d. This could be due to the fact that
JAX’s code generation is better optimized for the A100 hard-
ware, compared to RTX 3090. However, the general per-
formance trends are still similar to that of Fig. 4. On av-
erage APPy achieves 18.8X speedup over JAX (with JIT)
and 34.6X speedup over CuPy. Comparing to the CPU frame-
works, APPy achieves 65.7X speedup over NumPy, and 16.8x
speedup over Numba.



APPy: Annotated Parallelism for Python on GPUs

Total 165.7 13.5

EON 139

118.900 0.32s -

176.107 14.7

azimnaiv

cholesky 12.8 14310 122.1@ 0.88s A
covarian f gk - 12.1@ 74.69 ms -|
{el¢lPL] 19200  1114.00  153.8?) 5.58s A
liCIVEYd 18920 1104.00 14216 15.5 3.18s A
gemm EEPIHEY 128.306) 11,10 73.91 ms
gemver EREEENIC 167.60 : 0.95s -
gesummy ERPIENE 182.4 0.37s A
gramschm EEEE 15.9¢%) 121.6 0.78s A
Y]
] Wl 7156.000  150.429  1118.0% 12,5 0.43s -
1S
S
SRLCELER] 902,00 1964.00) 183500 116.0® 6.33s A
m
jacobi2d FEREIPX] 1337.00 166.6 13.3® 4.65s

npgofast TR - S oo |

softmax FREEyAIS 125.0 1117.0% ] 1.18s

spmyv BEENIE 153.5 147.6 1118.009) 0.56s A
symm B0 15.30 126.20) 111.26 7.27s A
syr2k BREEENIE .0 1122 16.50 12.19s -

SYdq 1215.0¢ 117,509 117.1 13.560) 4.41s A
trisolv 116 11.80 110.8W 12.5@) 0.15s A

trmm 115.3® 147.0 110.200 2.63s

appy
jax
Cupy
numba
numpy

Figure 5. Additional performance results on the same set
of benchmarks as Fig. 4 but using a different server with an
AMD EPYC 7502 32-Core CPU and an NVIDIA A100-PCIE-
40GB GPU. All frameworks show their speedup relative to
NumPy, except NumPy itself shows its absolute execution
time in seconds. Up arrows indicate performance improve-
ment, and down arrows indicate performance slowdown.

CC ’24, March 2-3, 2024, Edinburgh, United Kingdom

7 Related Work
7.1 SIMT/SPMD-Based GPU Programming

General purpose GPU programming can be classified into
1) explicit parallel programming and 2) compiler directive-
based programming. The former traditionally employs an
extended version of C/C++ language that enables express-
ing parallelism in the style of single program multiple data
(SPMD), and two prominent programming languages are
CUDA [14] for NVIDIA hardware and OpenCL[22] which is
more portable and widely supported among vendors. Com-
bined with hardware-managed SIMD execution, this pro-
gramming paradigm is referred to as single instruction mul-
tiple thread (SIMT)[14], where the same piece of user code is
executed by multiple threads in parallel and threads within
a thread block can communicate via on-chip shared mem-
ory. SPMD combined with hardware SIMD enables highly
flexible programming interface and high performance at the
same time, but this low-level GPU programming is inher-
ently challenging, due to the complexity of managing thread
synchronization and memory hierarchy optimization.

Numba [13] supports GPU programming by directly ex-
posing the parallel execution model of the hardware in a
way similar to CUDA-C and OpenCL, which still requires ex-
plicit parallel programming, although embedded in Python.
Triton [24] language and compiler is a more recent effort in
the realm of general purpose GPU programming. Its goal
is to provide a simplified programming interface compared
to CUDA or OpenCL, by letting the compiler automatically
manages intra-block thread scheduling, memory coalesc-
ing and shared memory management. However, Triton still
requires the programmer to manually partition the computa-
tion onto different program instances, selecting block sizes
and launching the GPU kernels. In addition, optimizations
such as operator fusion are still manual.

None of these approaches parallelize a sequential Python
loop directly and support array/tensor operations as APPy
does.

7.2 Directive-Based GPU Programming

Two popular directive-based programming models for GPUs
are OpenMP [3] and OpenACC[21], which are based on
C/C++/Fortran. OpenMP originally only targets at multicore
CPUs, but has introduced new pragmas to target at GPUs
since OpenMP 4 while OpenACC was originally designed
for GPUs but has support for CPUs as well. They simplify
the programming effort compared to CUDA and OpenCL by
allowing annotating sequential loops with pragmas and the
compiler generates the final parallel code. However, they still
directly expose GPU’s complex hierarchy of parallelism, and
as a result, one has to grasp the GPU hardware execution
model and use a complex set of directives to achieve max-
imum parallelism. [19] proposes a unified SIMD primitive



CC ’24, March 2-3, 2024, Edinburgh, United Kingdom

coupled with the Kokkos ecosystem that allows intrinsics-
based vectorization on CPUs and GPUs. A feature called
logical vector length (LVL) is also proposed to write code
without considering underlying physical vector length. This
is similar to the maximal vector length (MVL) in APPy. But
the SIMD primitive in [19] is still built upon Kokkos’ exist-
ing complex parallel programming concepts and requires
the programmer to manage teams, threads etc. In contrast,
APPy’s directives are much higher level and let the program-
mer write just regular sequential code.

7.3 Library-Based GPU Acceleration

CuPy [16] is a NumPy/SciPy-compatible array library for
GPU-accelerated computing with Python. Its interface is
highly compatible with NumPy and SciPy and in most cases
it can be used as a drop-in replacement. In addition to pro-
viding NumPy-compatible operators, CuPy also provides
simple interface to quickly write custom element-wise and
reduction CUDA kernels. Custom generic CUDA kernels can
also be imported using CuPy’s RawKernel module, which
compiles and wraps CUDA C++ code to a Python function.
PyTorch [18], TensorFlow [1] and JAX [6] are among the
most popular machine learning frameworks that provide
CuPy-like generic tensor computation APIs as well as ma-
chine learning building blocks. Legate [2] (cuNumeric) is
another framework that aims to provide a distributed and
accelerated drop-in replacement for the NumPy. It supports
both single node CPU/GPU and transparent distributed ac-
celeration across multi-node machines.

7.4 High-Level Language to GPU Compiler

jit4GPU (implemented under unPython) [7] is an early ef-
fort (2010) that just-in-time compiles Python/NumPy code
to both CPU code (with OpenMP) and GPU code (AMD
hardware-only). It also takes an annotation-based approach
and requires the programmer to annotate parallel loops with
prange. However, the paper does not document how it per-
forms thread-level parallelization and parallel reduction does
not appear supported as well. In terms of memory hierarchy
optimization, jit4GPU does not generally perform opera-
tor fusion, due to lack of dependence analysis. Loo. py [12]
employs a domain-specific language similar to the sliced
index notation to express parallel kernels, and also provides
schedules to specify code transformations. However it does
not provide general programming interface to express more
general programs, such as parallel reduction with indirect
memory access. ALPyNA [11] proposes an automatic Python
loop parallelization approach that splits the compilation and
dependence analysis into an ahead-of-time (AOT) stage and
a just-in-time (JIT) stage. However, its performance evalua-
tion does not demonstrate consistent performance improve-
ment over Numba (can be even 3X slower than Numba).
In addition, it targets at only loops, not tensor expressions.
DaCe[26] compiles and parallelizes Python code to both CPU

Tong Zhou, Jun Shirako and Vivek Sarkar.

and GPU execution, using a stateful dataflow multiGraphs
(SDFG) data-centric intermediate representation, on which
automatic or manual transformations can be performed. Par-
allel loops are either manually specified as dace . map iterator,
or automatically inferred by a transformation pass via de-
pendence analysis. However we have observed that certain
parallelizable patterns are not parallelized by DaCe which
could lead to sub-optimal performance. AutoMPHC [20] pro-
poses an approach to automatic ahead-of-time (AOT) paral-
lelization and optimization of sequential Python programs
for execution on distributed heterogeneous platforms, based
on extensions to the polyhedral framework that unify user-
written loops and tensor operators. However its intra-node
parallelization strategy of explicit loops is limited in that an
equivalent pre-defined tensor operator must exist in order
for the loop to be parallelized, nor can it parallelize loops
with indirect memory accesses.

8 Conclusion

In this work, we present APPy, which allows users to paral-
lelize their sequential Python loops and tensor assignments
on GPUs using compiler directives. We present the design
and implementation of APPy, including code generation and
automatic compiler optimizations. We evaluate the perfor-
mance of APPy using 20 kernels from scientific computing
and demonstrate significant speedup over a state-of-the-art
library CuPy (30X on average) and three Python compilers
Numba (8.3% on average), DaCe-GPU (3.1X on average) and
JAX-GPU (18.8% on average).

9 Acknowledgments

This work is partly based upon work supported by the De-
fense Advanced Research Projects Agency (DARPA) under
Agreement Nos. HR0011-17-S-0055 and HR0011-20-9-0020.
This work is also partly based upon work supported by the
Office of the Director of National Intelligence (ODNI), Intelli-
gence Advanced Research Projects Activity (IARPA), through
the Advanced Graphical Intelligence Logical Computing En-
vironment (AGILE) research program, under Army Research
Office (ARO) contract number W911NF22C0083. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of the ODNI, IARPA, or the U.S. Government. We thank the
reviewers for their helpful feedback and suggestions to im-
prove the paper. We thank Alexandros Ziogas for using his
script when creating the performance results graph, and his
help with getting familiar with NPBench and DaCe.



APPy: Annotated Parallelism for Python on GPUs

References

(1]

(3]
(4]

—
oo
[t

(10]

(11]

(12]

(13]

(14]

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, lan Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. https://www.tensorflow.org/ Software
available from tensorflow.org.

Michael Bauer and Michael Garland. 2019. Legate NumPy: Accel-
erated and Distributed Array Computing. In Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (Denver, Colorado) (SC ’19). Association for
Computing Machinery, New York, NY, USA, Article 23, 23 pages.
https://doi.org/10.1145/3295500.3356175

OpenMP Architecture Review Board. [n. d.]. OpenMP Programming
API5.2. https://www.openmp.org/spec-html/5.2/openmp.html
André R Brodtkorb, Trond R Hagen, and Martin L Seetra. 2013. Graphics
processing unit (GPU) programming strategies and trends in GPU
computing. J. Parallel and Distrib. Comput. 73, 1 (2013), 4-13.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, et al. 2018. {TVM}: An Automated {End-to-End} Optimizing
Compiler for Deep Learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). 578-594.

Roy Frostig, Matthew Johnson, and Chris Leary. 2018. Compiling
machine learning programs via high-level tracing. https://mlsys.org/
Conferences/doc/2018/146.pdf

Rahul Garg and José Nelson Amaral. 2010. Compiling Python to a
Hybrid Execution Environment. In Proceedings of the 3rd Workshop on
General-Purpose Computation on Graphics Processing Units (Pittsburgh,
Pennsylvania, USA) (GPGPU-3). Association for Computing Machinery,
New York, NY, USA, 19-30. https://doi.org/10.1145/1735688.1735695
Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep
Learning. MIT Press. http://www.deeplearningbook.org.

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor,
Sebastian Berg, Nathaniel J Smith, et al. 2020. Array programming
with NumPy. Nature 585, 7825 (2020), 357-362.

John L. Hennessy and David A. Patterson. 2017. Computer Architecture,
Sixth Edition: A Quantitative Approach (6th ed.). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Dejice Jacob, Phil Trinder, and Jeremy Singer. 2019. Python program-
mers have GPUs too: automatic Python loop parallelization with staged
dependence analysis. In Proceedings of the 15th ACM SIGPLAN Interna-
tional Symposium on Dynamic Languages (Athens, Greece) (DLS 2019).
Association for Computing Machinery, New York, NY, USA, 42-54.
https://doi.org/10.1145/3359619.3359743

Andreas Klockner. 2014. Loo.Py: Transformation-Based Code Gen-
eration for GPUs and CPUs. In Proceedings of ACM SIGPLAN In-
ternational Workshop on Libraries, Languages, and Compilers for Ar-
ray Programming (Edinburgh, United Kingdom) (ARRAY’14). Associ-
ation for Computing Machinery, New York, NY, USA, 82-87. https:
//doi.org/10.1145/2627373.2627387

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: A
llvm-based python jit compiler. In Proceedings of the Second Workshop
on the LLVM Compiler Infrastructure in HPC. 1-6.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008.
Scalable Parallel Programming with CUDA: Is CUDA the Parallel
Programming Model That Application Developers Have Been Waiting

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

CC ’24, March 2-3, 2024, Edinburgh, United Kingdom

For? Queue 6, 2 (mar 2008), 40-53. https://doi.org/10.1145/1365490.
1365500

Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin
Ren. 2021. DNNFusion: Accelerating Deep Neural Networks Exe-
cution with Advanced Operator Fusion. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (Virtual, Canada) (PLDI 2021). Associa-
tion for Computing Machinery, New York, NY, USA, 883-898. https:
//doi.org/10.1145/3453483.3454083

Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Criss-
man Loomis. 2017. CuPy: A NumPy-Compatible Library for NVIDIA
GPU Calculations. In Proceedings of Workshop on Machine Learning
Systems (LearningSys) in The Thirty-first Annual Conference on Neural
Information Processing Systems (NIPS). http://learningsys.org/nips17/
assets/papers/paper_16.pdf

John D. Owens, Mike Houston, David Luebke, Simon Green, John E.
Stone, and James C. Phillips. 2008. GPU Computing. Proc. IEEE 96, 5
(2008), 879-899. https://doi.org/10.1109/JPROC.2008.917757

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural informa-
tion processing systems 32 (2019).

Damodar Sahasrabudhe, Eric T. Phipps, Sivasankaran Rajamanickam,
and Martin Berzins. 2020. A Portable SIMD Primitive Using Kokkos
for Heterogeneous Architectures. In Accelerator Programming Using
Directives, Sandra Wienke and Sridutt Bhalachandra (Eds.). Springer
International Publishing, Cham, 140-163.

Jun Shirako, Akihiro Hayashi, Sri Raj Paul, Alexey Tumanov, and
Vivek Sarkar. 2022. Automatic Parallelization of Python Programs
for Distributed Heterogeneous Computing. In Euro-Par 2022: Parallel
Processing, José Cano and Phil Trinder (Eds.). Springer International
Publishing, Cham, 350-366.

OpenACC specification authors. [n.d.]. OpenACC Programming
API3.2. https://www.openacc.org/sites/default/files/inline-images/
Specification/OpenACC-3.2-final.pdf

John E. Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A
Parallel Programming Standard for Heterogeneous Computing Sys-
tems. Computing in Science and Engineering 12, 3 (2010), 66-73.
https://doi.org/10.1109/MCSE.2010.69

Christopher Stover and Eric W. Weisstein. [n. d.]. Einstein Summation.
https://mathworld.wolfram.com/EinsteinSummation.html

Philippe Tillet, H. T. Kung, and David Cox. 2019. Triton: An Intermedi-
ate Language and Compiler for Tiled Neural Network Computations.
In Proceedings of the 3rd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages (Phoenix, AZ, USA)
(MAPL 2019). Association for Computing Machinery, New York, NY,
USA, 10-19. https://doi.org/10.1145/3315508.3329973

Alexandros Nikolaos Ziogas, Tal Ben-Nun, Timo Schneider, and
Torsten Hoefler. 2021. NPBench: A Benchmarking Suite for High-
Performance NumPy. In Proceedings of the ACM International Con-
ference on Supercomputing (Virtual Event, USA) (ICS "21). Associa-
tion for Computing Machinery, New York, NY, USA, 63-74. https:
//doi.org/10.1145/3447818.3460360

Alexandros Nikolaos Ziogas, Timo Schneider, Tal Ben-Nun, Alexandru
Calotoiu, Tiziano De Matteis, Johannes de Fine Licht, Luca Lavarini,
and Torsten Hoefler. 2021. Productivity, Portability, Performance: Data-
Centric Python. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (St. Louis,
Missouri) (SC °21). Association for Computing Machinery, New York,
NY, USA, Article 95, 13 pages. https://doi.org/10.1145/3458817.3476176


https://www.tensorflow.org/
https://doi.org/10.1145/3295500.3356175
https://www.openmp.org/spec-html/5.2/openmp.html
https://mlsys.org/Conferences/doc/2018/146.pdf
https://mlsys.org/Conferences/doc/2018/146.pdf
https://doi.org/10.1145/1735688.1735695
http://www.deeplearningbook.org
https://doi.org/10.1145/3359619.3359743
https://doi.org/10.1145/2627373.2627387
https://doi.org/10.1145/2627373.2627387
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/3453483.3454083
https://doi.org/10.1145/3453483.3454083
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://doi.org/10.1109/JPROC.2008.917757
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.2-final.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.2-final.pdf
https://doi.org/10.1109/MCSE.2010.69
https://mathworld.wolfram.com/EinsteinSummation.html
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3447818.3460360
https://doi.org/10.1145/3447818.3460360
https://doi.org/10.1145/3458817.3476176

CC ’24, March 2-3, 2024, Edinburgh, United Kingdom

A Implementation Details

This section gives more details that are not covered in the
implementation overview. Fig. 6 shows the end-to-end work-
flow using the group-by-sum as an example.

A.1 Algorithm Notation

All of the code generation and analysis algorithms are based
on AST tree traversals &, so in the pseudocode we often use
the term node to represent an AST node. We assume the
existence of utility functions that create an AST object of
a given type and accept either strings or AST objects as
arguments. These utility functions are named new(Kind),
e.g. newCall, newAssign etc. We also assume that an AST
object has the associated attributes for its kind. For example
an assignment object will have two attributes target and
value, to represent the storing target and the value to be
stored respectively.

Algorithm 2 Top-level compilation process. func is the
function object to be compiled. A new function is returned.

1: function coDEGEN(func)

2 ast «— getAST (func)

3 m <« newModule()

4 ast <« HIGHLEVELTRANSFORM(ast)

5: for node in depth-first-traversal of ast do

6 if node is a top-level parallel for-loop then
7 devFunc < GENDEVICECODE(node)

8 hostCode «— GENHosTCODE(node)

9 m.body.append(devFunc)

10: replace node with hostCode

11: append ast to m, dynamically load module m and
 return the new function from m.

A.2 High-Level APPy To “Assembly” APPy
Transformation

Alg. 3 describes the high-level analysis and transformations.
The first pass is to transform the AST of the input function to
a normalized form, paving the way for downstream analysis
and transformations. This includes rewriting += operator
into a regular assignment, rewriting range(N) to range (9,
N, 1) etc. The next pass is to link user annotated pragmas
with the corresponding statement or loop, such that later
passes can check if a loop/statement is annotated, e.g. paral-
lel or simd etc. Line 14 inserts synchronization statements to
guarantee a worker executes its code sequentially even when
mapped to multiple asynchronous threads, and is described
in more detail in section A.3. Line 11 guarantees correct
code generation for array assignments such as AL1:N] =
A[0:N-11, by splitting the assignment, first storing to a tem-
porary array, and then store to AL1:N] in another statement.

8The actual implementations are based on the
ast.NodeTransformer module.

Python

Tong Zhou, Jun Shirako and Vivek Sarkar.

Line 17 converts loops with the simd directive to a strip-
mined form, as shown in Alg. 6; and line 19 converts tensor
expressions into strip-mined loops and is covered in detail
in section A.4. Each of these steps has a time complexity
of O(V) where V is the number of nodes in the AST. After
this sequence of high level transformations, the code is now
ready to be converted to Triton code.

Algorithm 3 High-Level transformations performed to the
input APPy function. The resulting function is a “assembly
APPy" code.

1: function HIGHLEVELTRANSFORM(ast)

2: ast < NORMALIZE(ast)
> Link a pragma to the node following it

3: pragma < None

4 for node in depth-first-traversal of ast do

5 if node is a pragma comment then

6: ‘ pragma «— node.value

7: else

8 if pragma # None then

9: L node.pragma < pragma

10: pragma < None

> Ensures correct codegen for like “A[1:N] = A[0:N-1]"

11: CREATETEMPARRAY(ast)
12: for node in depth-first-traversal of ast do
13: if node is a parallel for loop then
14: | INsERTSYNC(node)
15: for node in depth-first-traversal of ast do
16: if node is a for-loop annotated with simd then
17: . coNVERTSIMDLooP(node)
18: if node is a tensor expression assignment then
19: | CONVERTTENSORASSIGN(node)
20: _ return ast

Algorithm 4 Algorithm to insert synchronization state-
ments in the worker code.

1: function INSERTSYNC(node)

2 used < new set

3 for child in depth-first-traversal of node do
4 if child is an array load then

5: | used.add(child.tensorName)

6 for child in depth-first-traversal of node do
7 if child is an array store then

8 if child.tensor Name in used then

9 s1 < new synchronization call
10: s2 < new synchronization call
11: B replace child with (s1, child, s2)

A.3 Parallelize A Worker

A vector statement is executed by a worker in a vectorized
fashion in lockstep. There are multiple possible approaches



APPy: Annotated Parallelism for Python on GPUs

1 @appy.jit(auto_simd=True)

2 def group_by_sum(data, ls, cs, M, N):
3 #pragma parallel for

4 for i in range(M):

5 1 = 1s[i]

6 #pragma atomic

7 cs[1, :N] += datali, :N]

(a) Original input program.

@appy . jit(auto_simd=True)
def group_by_sum(data, 1ls, cs, M, N):
#pragma parallel for
for i in range(@, M, 1):
1 = 1s[i]
for _var@ in range(@, N, MVL):
_varl = vidx(_var@, MVL, N)
#pragma atomic
cs[1l, _var1] += datali, _vari]

o N I S I NI TRy

(b) After lowering to “assembly” APPy. The tensor/array assign-
ment is converted to a strip-mined loop.

CC ’24, March 2-3, 2024, Edinburgh, United Kingdom

1 import triton

2 import triton.language as tl

3

4 @triton.jit

5 def _kernel(data, 1ls, cs, M, N, data_strideo, \

6 1s_stride@, cs_stride@, MVL: tl.constexpr):

7 i = tl.program_id(0) * 1

8 1 = tl.load(ls, i)

9 for _var@ in range(@, N, MVL):

10 _varl = _var@ + tl.arange(MVL)

11 tl.atomic_add(cs + lxcs_stride@ + _varl, \

12 tl.load(data + ixdata_stride@ + _varl, \
13 mask=_var1 < N), \

14 mask=_var1 < N)

16 def group_by_sum(data, ls, cs, M, N):
17 grid =M // 1

18 MVL = 128
19 _kernel[grid](data, 1ls, cs, M, N, data.stride(0), \
20 1s.stride(@), cs.stride(2), MVL)

(c) The original parallel for-loop is replaced by the generated
host code, and a Triton kernel function _kernel.

Figure 6. Compilation workflow using group-by-sum as an example. Section A.2-A.4 and A.5 cover the transformations from

(6a) to (6b), and from (6b) to (6c), respectively.

Algorithm 5 Algorithm to allocate temporary arrays for
array assignments that may have data dependences.

1: function CREATETEMPARRAY(ast)

2 for node in depth-first-traversal of ast do

3 if node is a tensor assignment then

4 tar « node.target

5 if tar is used in node.value then

> Allocate a new temporary array “tmp"
tmp «— getNewVar()

alloc « newCall(“empty_like”, tar)
s1 « newAssign(tmp, alloc)

s2 « deepcopy(node)

> Update assignment target to “tmp"
10: node.target.tensorName «— tmp

> Store “tmp" to the original target
11: s2.value = node.target

12: replace node with (s1, node, s2)

Y ®

to implement a worker on an actual hardware like a GPU.
The first approach is to map a worker to a single hardware
SIMD execution unit, e.g. a warp (or wavefront). The synchro-
nized execution of a warp naturally maps to the vectorized
execution of tensor expressions. However, a warp typically
has limited parallelism (lanes), e.g. 32 and 64. These SIMD
units are not designed to have very long lanes to achieve
efficiency when there are branch divergences. The down-
side of mapping a worker to a warp is that synchronization
is limited to warp scope, which could in turn limit paral-
lelism, e.g. for parallel reductions. A more flexible approach
is to map a worker to a thread block, which support larger

Algorithm 6 Code generation algorithm to handle simd
directive.

1: function convERTSIMDLooP(loop)

2 i « loop.index

3 N « loop.upperBound

4 vi « newCall(“vidx”, “MVL”,N)

5: s «— newAssign(i, vi)

6 loop.body.insert(0, s)

> Rewrite “s =s +.."to “s = s + sum(...)" etc

7: for child in in depth-first-traversal of loop do

8 if child is a reduction assignment then

9 op < getReduceOpType(child)

10: val <« newCall(op, getReduceVal(child))
11 tar « child.target

12: newVal < newBinOp(op, tar,val)

13: newChild « newAssign(tar, newVal)
14| | replace child with newChild

synchronization scope by allowing inter-warp communi-
cation. However, this flexibility comes with its own com-
plexity: different warps may execute asynchronously, which
may violate the vectorized semantics. An easy solution is
to insert synchronization barrier after each original APPy
statement that involves a memory read or write, to enforce
synchronized execution (note that such synchronization is
automatically implied if a worker is mapped to a single warp).
An alternative approach that we implement which could be
more efficient when the program has more memory loads
than writes is to insert a synchronization before and after
every memory store, shown in Alg. 4. This makes sure that
1) before a store operation, all previous memory loads and
stores have completed; 2) and the store operation itself must



CC ’24, March 2-3, 2024, Edinburgh, United Kingdom

have completed before future memory loads or stores are
executed. Therefore the vectorized execution semantics are
preserved. In addition, we can apply a simple optimization: if
the array being stored is never used in any other statements,
the synchronizations before and after it can be skipped, since
this write cannot possibly have data dependencies with other
reads, since APPy disallows pointer aliasing.

A.4 Lowering Tensor Assignments To Loops

Alg. 7 shows the code generation algorithm to generate a
loop from a tensor assignment. An index variable and a
loop is created for each unique dimension, and the slicings
in the original statement is replaced by these new index
variables. The depth of the loop nest equals the number of
unique dimensions in the tensor assignment, with the orig-
inal statement sits in the innermost loop. During the code
generation process, a form of operator fusion, which we
call reduction-bounded operator fusion is automatically per-
formed, as described in more detail in section 5.1.4. Another
optimization is that thread synchronization is not necessary
within loops generated from tensor assignments. This opti-
mization is reflected in Alg. 3 that insertSync is performed
before convertTensorAssign.

Tong Zhou, Jun Shirako and Vivek Sarkar.

Algorithm 7 Generate a loop nest from a tensor assignment.

1: function CONVERTTENSORASSIGN(node)

2 m «— newModule()

3: pe—m

4 slice2var < new map

> Generate the loop nest structure

for dim in getSlicings(node.pragma) do
loop < GENONELOOP(dim)

p.body.append(loop)
p « loop

o N

L > loop is new parent

> Update the assignment to use new index vars
9 for child in depth-first-traversal of node do

10: if child is a slicing then
11: if child in slice2var then
12: ‘ idx « slice2var|child]
13: else
> Deal with shifted index
14: for s in slice2var.keys() do
> Requires symbolic computation

15: of f « symbolicSubtract(child, s)
16: if of f is a constant then
17: - idx < newAdd(s,of f)
18: | replace child with idx

> Update the value for reductions
19: if node has reduction then
20: op « getReduceOp(node)
21: val <« newBinOp(op, node.target, node.value)
22: . node.value «— val

> Insert updated statement into the innermost loop

23: p.body.append(node)
24: return m.body

A.5 “Assembly” APPy to Triton Code Generation

The Triton code generation algorithm generates a Triton ker-
nel function (Alg. 9), together with its corresponding host
code (Alg. 10), from a parallel APPy for-loop. The parallel
for-loop can be a nested parallel loop, in which case a multi-
dimensional thread block will be launched (determined in
sub-procedure inspectSubLoops). To generate a device func-
tion, Alg. 9 first creates an empty function decorated with
@triton.jit, inserts the program_id statements, and then it
converts the loop body into a Triton kernel and insert the
transformed statements (Alg. 12) into the new function. To
generate host code, Alg. 10 creates an N-dimensional grid,
where “N” is determined in inspectSubLoops, and launches
the kernel by passing the actual arguments, including the
block size (appy.MVL). A good block size depends on the
hardware and the kernel. For our implementation and evalu-
ation on an NVIDIA GPU, we generated some auto-tuning
code that automatically selects the best block size (that lead
to the best runtime) from 4 possible options, 128, 256, 512



APPy: Annotated Parallelism for Python on GPUs

CC ’24, March 2-3, 2024, Edinburgh, United Kingdom

Algorithm 8 Generate a single loop layer or a statement for
a dimension.

1: function GENONELoOP(dim)

2 start, end « getRangeFromSlice(dim)
3: i « getNewVar()
> Skip generating a loop for small dimensions
4: if dim.le # None then
5: vi « newCall(“vidx”, i,dim.le, end)
6: m «— newModule()
7: m.body.append(vi)
8: return m
9: else
10: if dim.simd == true then
11: vi « newCall(“vidx”, i, “MVL”, end)
12: loop < newLoop(i, start, end, “MVL”)
13: loop.body.append(vi)
14: else
15: L loop < newLoop(i, start, end, “1”)
16: if dim.parallel == true then
17:  loop.pragma < “parallel for”
18: else
190 | return loop

and 1024. The best block size is cached for later invocations
of the kernel.

Algorithm 9 Generate a Triton GPU kernel from a parallel
loop. It calls Alg. 12 as a sub-procedure.

1: function GENDEVICECODE(node)
2 params < EXTRACTKERNELPARAMS(node)
3 devFunc < newFunction(params)
4 addDecorator(devFunc, “triton.jit”)
5: INSPECTSUBLOOPs(node)
6 axis <« 0

7 for ploop in node.parloops do

8 pid «— newCall(“tl.program_id”, axis)

9: i « ploop.target

10: s « newAssign (i, newMul(pid, ploop.step))
> Example: i = tl.program_id(0) * step

11: devFunc.body.append(s)

12: L axis < axis+1

13: for child in node do

14: newChild <« TOTRITONSTMTS(child)

15: . devFunc.body.append(newChild)

16: | return devFunc

Algorithm 10 Generate host code to launch the Triton ker-
nel. This includes determining the dimension of the grid and
passing the arguments etc.

1: function GeNHosTCoDE(node)

2 args < EXTRACTKERNELARGS(node)
3 args < setMVL(args)

4 grid < empty list

5 for ploop in node.parloops do

6 up « ploop.upperBound

7 lo « ploop.lowerBound

8 st «— ploop.step

9: nblocks «— newCall(“ceil_div”, newSub(up, lo), st)
10: grid.append(nblocks)

11 return newKernelCall(grid, args)

Algorithm 11 Inspect the parallel sub-loops for a top-level
parallel loop.

1: function INSPECTSUBLoOOPS(node)

2 parloops < empty set

3 for child in depth-first-traversal of node do
4 L if child is a parallel loop then

5  parloops.add(child)

6 node.parloops < parloops

B Limitations

APPy has a number of limitations that we hope to address
in the future work.

B.1 Language Rules

e APPy uses syntactical difference to denote the dimen-
sionality of the variables. This can be viewed as a form
of type annotations. For example, a or A[0] denotes a
scalar variable while A[: ] and B[:, :] would denote
a 1D and 2D tensor, respectively.

e To make alias of an array or an array slice, one must
use a built-in function, e.g. a = appy.alias(A[:1),
since a = A[:] is a memory load statement in APPy.

e When loading a slice of an array into a scalar, the
size of the slice must be specified with a 1e (CONST)
property.

e Arrays cannot have overlap in their memory regions.

B.2 Unsupported Functions

APPy supports slicing an array, memory loads and stores, ba-
sic mathematical functions on scalars or tensors, and broad-
casting a dimension. Operations unsupported include reshap-
ing, concatenating, sorting arrays, and linear algebra rou-
tines. One can either use these functions just in the Python
interpreter (no compilation), or create their custom imple-
mentations using the basic operations recognizable by APPy.



CC ’24, March 2-3, 2024, Edinburgh, United Kingdom

Algorithm 12 Convert APPy statements to Triton state-
ments.

1: function TOTRITONSTMTS(node)

2 if node is an assignment then

3 node.value < TOTRITONSTMTS(node.value)

4 node.target.parent «— node

5 if node.target is an array store then

6  node «— TOTRITONSTMTS(node.target)

7 else

8 L node.target < TOTRITON-

B StmTs(node.target)

9: else if node is an array subscript then

10: of fset « generate offsets from node.indices
11: mask < generate mask from node.indices
12: ptrs « newAdd(node.tensorName,of fset)
13: if node.ctx is a load then

14: ‘ node «— newCall(“tl.load”, ptrs, mask)
15: else

16: val < node.parent.value

17: op < “tl.store”

18: if node is an atomic update then

> op will become “tl.atomic_add" etc

19: op < getReduceOpType(node.parent)
20: val « getReduceVal(node.parent)
21: . node < newCall(op, ptrs,val, mask)
22: else if node is a function call then
23: ‘ update node.funcName to the Triton version
24: else
25: for child in iterChildNodes(node) do
26: L newChild « TOTRITONSTMTS(child)
27: node.{childFieldName) «— newChild
28: | return node

B.3 Unsupported Annotations

A tensor dimension cannot have conflicting properties in
different sub-expressions. For example, for tensor expression
AL:M, :N] / sum(A[:M, :N], axis=1)[:, None], dimen-
sion :N is a reduction dimension in the sum sub-expression,
but a non-reduction dimension for the divide operator. The
statement can be separated into multiple new statements
(with their own annotations) to resolve the conflict.

In addition, APPy currently requires the result of a reduc-
tion operator not be used as a sub-expression, and must be
assigned to a temporary tensor. For example, to sum up two
matrix vector multiplications (mv), as in kernel gesummv in
Listing 7, one must store the results of both mvs to two dif-
ferent temporary tensors, and then create a third statement

to add these two temporary tensors °.

Received 12-NOV-2023; accepted 2023-12-23

This requirement is due to the complexity of splitting an expression and
its pragmas automatically into sub-expressions and their annotations.

Tong Zhou, Jun Shirako and Vivek Sarkar.



	Abstract
	1 Introduction
	2 Abstract Machine Model
	3 Loop-Oriented Programming Interface
	3.1 Parallelization
	3.2 Vectorization
	3.3 Data Sharing
	3.4 Synchronization

	4 Tensor-Oriented Programming Interface
	4.1 Sliced Index Notation
	4.2 Tensor-Oriented Pragmas

	5 Implementation Overview
	5.1 High-Level APPy To ``Assembly'' APPy Transformation
	5.2 Triton Background
	5.3 ``Assembly'' APPy to Triton Code Generation

	6 Performance Evaluation
	6.1 Code Adaptation
	6.2 Performance Results
	6.3 Additional Performance Results

	7 Related Work
	7.1 SIMT/SPMD-Based GPU Programming
	7.2 Directive-Based GPU Programming
	7.3 Library-Based GPU Acceleration
	7.4 High-Level Language to GPU Compiler

	8 Conclusion
	9 Acknowledgments
	References
	A Implementation Details
	A.1 Algorithm Notation
	A.2 High-Level APPy To ``Assembly'' APPy Transformation
	A.3 Parallelize A Worker
	A.4 Lowering Tensor Assignments To Loops
	A.5 ``Assembly'' APPy to Triton Code Generation

	B Limitations
	B.1 Language Rules
	B.2 Unsupported Functions
	B.3 Unsupported Annotations


