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Abstract

In this work-in-progress research paper, wemake the case for
using Rust to develop applications in the High Performance
Computing (HPC) domain which is critically dependent on
native C/C++ libraries. This work explores one example of
Safe HPC via the design of a Rust interface to an existing dis-
tributed C++ Actors library. This existing library has been
shown to deliver high performance to C++ developers of
irregular Partitioned Global Address Space (PGAS) applica-
tions.

Our key contribution is a proof-of-concept framework to
express parallel programs safe-ly in Rust (and potentially
other languages/systems), along with a corresponding study
of the problems solved by our runtime, the implementation
challenges faced, and user productivity. We also conducted
an early evaluation of our approach by converting C++ actor
implementations of four applications taken from the Bale
kernels to Rust Actors using our framework.

Our results show that the productivity bene�ts of our ap-
proach are signi�cant since our Rust-based approach helped
catch bugs statically during application development, with-
out degrading performance relative to the original C++ actor
versions.

CCS Concepts: • Software and its engineering→ Soft-

ware safety; • Theory of computation→ Distributed com-

puting models.
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1 Introduction

Rust is a natural candidate to explore for enabling both pro-
ductivity and performance in high-performance computing
(HPC) applications due to simultaneously having a rich type
system with memory-safety guarantees, as well as the ability
to write specialized low-level code without the additional
overhead that comes with managed runtimes.

One challenge in using Rust for HPC applications is in the
writing of low-level APIs and in using APIs from another
language (like C) that cannot be written easily or “safely” in
Rust. Low-level primitives frequently cannot be veri�ed as
safe by the Rust compiler, due to the compiler’s lack of knowl-
edge about hardware or inability to recognize the implicit
guarantees of an API. Rust has a special keyword, unsafe,
which allows programmers to annotate speci�c blocks of
code to be bypassed by the compiler’s safety checks. The
general design pattern for Rust libraries is to wrap necessary
unsafe logic behind a safe interface that forces the user to
meet Rust’s safety guarantees.
In this paper, we summarize our experiences with im-

plementing Rust interfaces for a recently developed high-
performance C++ actor-based programming system for Par-
titioned Global Address Space (PGAS) applications [12]. This
library enables the handlers for actor messages to be spec-
i�ed as C functions or as C++ lambdas. Following the ter-
minology introduced in [9], we refer to this library as the
Selectors library due to its support for actors with multiple

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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mailboxes. While Rust’s Foreign Function Interface (FFI) en-
ables low-overhead invocation of C, the callback nature of
message handlers in the Selectors library raises challenges
in avoiding the use of unsafe annotations. This work allows
developers to write application logic in Rust while invoking
this PGAS C/C++ library with minimal or no unsafe anno-
tations. Throughout the paper we refer to code that must
be annotated unsafe as unsafe where “unsafe” without any
emphasis is reserved for code that has some fundamentally
memory-unsafe quality about it. It is important to make this
distinction because Rust’s unsafe annotation should be used
for safe code that cannot be automatically veri�ed rather
than fundamentally unsafe code.
This paper makes the following contributions:

1. A novel implementation of a Rust-based Selectors li-
brary that allows for developing PGAS-based HPC
applications

2. An evaluation of this new implementation explores
design tradeo�s needed to minimize unsafe access pat-
terns when combining Rust and C++ codebases, espe-
cially for the Selectors API

3. Re�nements of the Rust library are discussed as ways
to further improve the safety of programs written with
this interface

2 Background

2.1 HClib Actor/Selector Library

The Habanero C/C++ library (HClib) [6] is an asynchronous
many-task (AMT) programming model-based runtime. The
authors of HClib have recently introduced an actor-based
programming system for HPC platforms [7, 12], where 1)
they integrate the SPMD (Single ProgramMultiple Data) pro-
gramming model with the conventional actor model [2, 8], 2)
they accelerate asynchronous actor messaging by leveraging
a high-performance message aggregation library (Convey-
ors [10]), and 3) they provide amechanism that automatically
automatically handles termination detection for actors with
minmal input from the programmer.
Speci�c to the Rust-based Actor/Selector library, a brief

summary of the relevant APIs that are adapted from HClib
is as follows:

1. launch: Used to initialize the HClib runtime. This in-
cludes spawning the worker threads.

2. send: Used to send an asynchronous message to a
remote actor or Processing Element (PE), which is
typically a worker thread tied to a single physical core.

3. done: Used to inform the runtime that the current ac-
tor/PE will not send any more messages to a speci�c
mailbox so as to aid the runtime with overall applica-
tion termination.

4. finish: Used for bulk task synchronization. It waits
on all tasks (including nested tasks) spawned within
the scope of the �nish. Speci�c to the actor runtime,

it waits until all outgoing messages are sent and all
incoming messages are processed on the current PE.

5. async: Used to create asynchronous tasks.
6. async_await: Used to create event-driven tasks that

uses future’s to specify task dependencies.

As with [12], the terms "actor" and "selector", the latter of
which is "actors with multiple mailboxes" [9], will be used
interchangeably for the remainder of the paper.

2.2 Rust’s Foreign Function Interface and Unsafe

Annotation

Rust supports the use of externally-de�ned functions using
the C ABI. This works in much the same way as it does in
C++ when linking to C libraries. The relevant functions are
declared inside an extern block, and the linking information
must be speci�ed (name/location of library to link). Because
the C++ ABI is generally more complex and less consistent
across di�erent compilers, Rust does not support linking to
C++ functions directly.
More importantly, any external functions are automati-

cally considered unsafe by Rust because the Rust compiler
cannot verify the safety of external functions. For instance, it
has no way of knowing that such functions will not perform
an improper access or save a supplied pointer that may be
dereferenced later after the Rust application has deallocated
the pointed-to object (lifetime veri�cation).

2.3 Conveyors

A Conveyor is an abstraction that “conveys” messages be-
tween processes in parallel applications. For portability, the
Conveyors library can be built atop SHMEM, MPI, or UPC.
Conveyors are interfaced with a few core operations, of

which push, pull and advance are most important for our
later discussion. The push operation “enqueue[s] an item
for delivery to a speci�ed process” while the pull operation
“receive[s] an item and learn[s] which process sent it”. The
advance operation is used to “ensure forward progress” [10].

3 Rust Selectors API

3.1 Goals

Our approach to making the HClib Actor/Selector library
APIs usable from Rust applications can be summarized by
the following goals:

• Feature parity with the original C++ HClib library
• Similarity in interface to the C++ HClib library; Rust
and C++ versions of applications should look similar,
making it simple to translate applications from C++ to
Rust

• Minimal friction with Rust’s type checking and mini-
mal use of unsafe application code
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1 pub trait Selector<'s, const N: usize> {
2 type Packet: Send + Sync;
3 fn handlers()
4 -> MailboxHandlers<'s, Self, N>
5 fn create(&'s mut self)
6 -> SelectorAddr<'s, Self, N>
7 // ...
8 }
9

10 pub struct Mailbox<'s, S, const N: usize>
11 where
12 S: Selector<'s, N>,
13 {
14 state: *mut S,
15 // ...
16 }
17

18 pub struct SelectorContext<'s, S, const N: usize>
19 where
20 S: Selector<'s, N>,
21 S::Packet: Send + Sync,
22 {
23 mailboxes:
24 Arc<MaybeUninit<[Mailbox<'s, S, N>; N]>>,
25 }
26

27

28 impl<'s, S, const N: usize> Mailbox<'s, S, N>
29 where
30 S: Selector<'s, N>,
31 S::Packet: Send + Sync,
32 {
33 pub fn new(
34 handle: SelectorContext<'s, S, N>,
35 state: *mut S,
36 process: MailboxHandler<'s, S, N>,
37 ) -> Self
38 pub fn start(&self)
39 // ...
40 }
41

42 pub type MailboxHandler<'s, S, const N: usize> =
43 Box<dyn Fn(&SelectorContext<'s, S, N>,
44 &mut S, <S as Selector<'s, N>>::Packet, i32)>;
45 pub type MailboxHandlers<'s, S, const N: usize> =
46 [MailboxHandler<'s, S, N>; N];
47

48

49 pub fn finish_with<'a, F, R>(f: F) -> R
50 where
51 F: FnOnce(&FinishScope<'a>) -> R

Figure 1. Main Rust interface to the Selectors runtime

3.2 Example Applications and Comparisons

We present several �gures that demonstrate the typing and
usage of the API functions in our framework. Where appli-
cable, we provide both Rust and C++ versions of the code
snippets. Outlines of the primary Rust API functions are
given in Figure 1. In Figures 2 and 3, we show usage of the
finish construct in the Index Gather kernel, written with
the Rust and C++ interfaces respectively. In Figures 4 and 5,
we have code for the Index Gather kernel in both Rust and
C++.

4 Bringing Safety to the API

It is less accurate to say that we directly wrapped the C++ Se-
lectors API than it is to say that we wrapped its dependencies

1 hclib::finish_with(|scope| {
2 ig_sel.start(scope);
3 for (i, &idx) in pckindx.iter().enumerate() {
4 let pkt = IgPkt {
5 idx: i as i64,
6 val: idx >> 16,
7 };
8 let dest_rank: i32 = (idx & 0xffff) as i32;
9 ig_sel.send_to(
10 MailBoxType::Request as usize, pkt, dest_rank);
11 }
12 ig_sel.done_on(MailBoxType::Request as usize);
13 });

Figure 2. Rust main program code for Index Gather kernel
using the finish construct

1 hclib::finish([=]() {
2 igs_ptr->start();
3 for(int i=0;i<l_num_req;i++) {
4 IgPkt pkt;
5 pkt.idx = i;
6 pkt.val = pckindx[i] >> 16;
7 int dest_rank = pckindx[i] & 0xffff;
8 igs_ptr->send(REQUEST, pkt, dest_rank);
9 }
10 igs_ptr->done(REQUEST);
11 });

Figure 3. C++ main program code for Index Gather kernel
using the finish construct

and then reimplemented the API. We wrapped conveyors
and the core of HClib, and then we re-implemented the HClib
Actor APIs on top of these. Conceptually, it was important
to make sure that the API we choose for Conveyors and
the lower-level HClib primitives to be safe because these
safety constraints “bubble up” into the higher level APIs. In
this section, we discuss our e�orts to make some of these
underlying APIs safe and the general lessons we think can
be extracted from them.

4.1 Wrapping Conveyors

A natural question when creating a Rust API for Conveyors
is "what types are safe to send between PEs?". Conveyors
send data by shallow copying that data between bu�ers. In
fact, we can ignore the speci�cs of the transmission and
view it abstractly as a shallow-copy between distributed
nodes. This high-level view also applies to data transmission
using other distributed-parallelism APIs such as MPI. Often
this shallow-copying takes the form of memcpy or a similar
library call.
When assessing what types are safe to send across PE

bounds, we need to determine what types can be safely
shallow-copied. For example, Rust’s primitive types can be
safely transmitted because they can be safely shallow-copied.
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1 struct IgSelector {
2 base: Selector<IgPkt, 2>,
3
4 ltable: *mut [i64],
5 tgt: *mut [i64],
6 }
7
8 impl IgSelector {
9 pub fn new(ltable: *mut [i64], tgt: *mut [i64])
10 -> Box<Self> {
11 let mut this: Box<MaybeUninit<Self>> =
12 Box::new(MaybeUninit::uninit());
13
14 let _this = this.as_mut_ptr();
15
16 let mb0 = move |pkt: IgPkt, sender_rank: i32| unsafe {
17 (*_this).req_process(pkt, sender_rank);
18 };
19
20 let mb1 = move |pkt: IgPkt, sender_rank: i32| unsafe {
21 (*_this).resp_process(pkt, sender_rank);
22 };
23
24 *this = MaybeUninit::new(IgSelector {
25 base: Selector::new([Box::new(mb0), Box::new(mb1)]),
26 ltable,
27 tgt,
28 });
29
30 unsafe { Box::from_raw(Box::into_raw(this) as *mut _) }
31 }
32
33 fn req_process(&mut self, mut pkt: IgPkt, sender_rank: i32) {
34 unsafe {
35 pkt.val = (*self.ltable)[pkt.val as usize];
36 }
37 self.base
38 .send(MailBoxType::Response as usize, pkt, sender_rank);
39 }
40
41 fn resp_process(&mut self, pkt: IgPkt, _sender_rank: i32) {
42 unsafe {
43 (*self.tgt)[pkt.idx as usize] = pkt.val;
44 }
45 }
46 }

Figure 4. Rust Code for Index Gather kernel using the new
APIs for the Selectors library with the baseline approach

1 class IgSelector: public hclib::Selector<2, IgPkt> {
2
3 //shared table array src, target
4 int64_t * ltable, *tgt;
5
6 void req_process(IgPkt pkt, int sender_rank) {
7 pkt.val = ltable[pkt.val];
8 send(RESPONSE, pkt, sender_rank);
9 }
10
11 void resp_process(IgPkt pkt, int sender_rank) {
12 tgt[pkt.idx] = pkt.val;
13 }
14
15 public:
16 IgSelector(int64_t *ltable, int64_t *tgt) :
17 ltable(ltable), tgt(tgt) {
18 mb[REQUEST].process =
19 [this](IgPkt pkt, int sender_rank) {
20 this->req_process(pkt, sender_rank);
21 };
22 mb[RESPONSE].process =
23 [this](IgPkt pkt, int sender_rank) {
24 this->resp_process(pkt, sender_rank);
25 };
26 }
27
28 };

Figure 5. Original code for Index Gather kernel using the
C++ APIs for the Selectors library

Rust’s String–on the other hand–cannot be safely shallow-
copied because it contains a pointer to the backing heap
allocation. Allowing new Strings to be created by shallow-
copying can lead to potentially unsafe code because if Rust

deallocates the original String, the copied String will con-
tain a pointer to the now-deallocated backing storage. To
account for this, we consider the data moved into the con-
veyor when it gets pushed. However, there is another issue
of safety on the receiver end. Assuming a String’s backing
array is allocated in local storage, any use of the pointer to
the backing storage by the receiver will be malformed. The
backing-array pointer refers to storage on the sender and
cannot be used by the receiver.
The appropriate type bound should capture the type of

any object that can be safely duplicated by shallow-copy.
The semantically closest trait Rust o�ers is Copy. This trait
is a marker that is meant to indicate that a value can be
copied with zero or little cost compared to moving. It is
implemented–for instance–by primitives because it is an
elementary operation to copy the value of a primitive to a
di�erent variable. String, on the other hand, is not marked
Copy because properly duplicating a String would involve
a potentially costly deep copy of the backing data. However,
we cannot rely on the convention that a Copy type should
be shallow-copiable, as it is only by convention. If a user so
desired, they could safely make any type which implements
Clone–which provides a (potentially costly) way to duplicate
the type–also implement Copy. Another option is requiring
that the type has the static lifetime. This captures that the
type’s validity is not tied to the validity of another object. A
reference to a local variable, for instance, would not satisfy
the static lifetime because it cannot outlive the value it ref-
erences. Unfortunately, String and similar types also have
a static lifetime because–although they reference externally
allocated memory–they own the backing data. The only way
to safely deallocate the backing data for a String is to drop
that String.
Seeing as the standard trait bounds are not su�cient for

ensuring a type can be safely transmitted using Conveyors,
we propose a new trait that encapsulates when a type can
safely be shallow copied. Rust’s Send and Sync traits, which
are used to mark the safety of sending/sharing types between
threads, provide a model for a similar marker trait. We pro-
pose adding an unsafe marker trait that is meant to mark
types which can be safely shallow copied and thus safely sent
between PEs in a distributed parallelism message-passing
context such as Conveyors or MPI. Users would have to use
unsafe code to mark their custom types as able to be safely
sent between PEs. The user is thus responsible for ensuring
that this contract is upheld, but this is a safer API because,
while users may erroneously mark types, they cannot use
a type that has not been marked as the message type for a
conveyor.

4.2 Role of Finish Construct in Establishing

Lifetimes

Async tasks in the HClib C API are akin to Rust’s standard
threads; they describe asynchronous computation in closures
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which are then passed to library functions to be scheduled
and executed.

In HClib, any async task launched within a finish block
needs to complete before the finish exits. Thus, it is sound
lifetime-wise for code inside an async task spawned inside
a finish block to reference any data that can be referenced
from the finish block’s scope.

The vanilla standard thread model is not powerful enough
to encapsulate this invariant because the borrow checker is
unable to understand that the lifetimes of data from outside
the thread will outlive the thread itself.
Since we are unable to prove the soundness of this logic

to the borrow checker, this naturally calls for unsafe. We
do exactly this, by modelling HClib tasks after Rust’s scoped
threads [1] which uses unsafe under the hood to anno-
tate lifetimes. Scoped threads are launched from within a
scoped block, and joined upon exiting the block. Each scoped
thread gets annotated with a ‘scope lifetime that spans the
scope block. As a result, any variable with a lifetime that
encompasses and outlives ‘scope can be borrowed within
the scoped thread. We illustrate this interface in Figure 6.

1 extern crate hclib;
2
3 #[hclib::hclib_entrypoint("system")]
4 fn main() {
5 let mut x = 0;
6 let y = 1;
7 hclib::finish_with(|scope| {
8 hclib::r#async(|| {
9 println!(
10 "Without scoping, variables cannot be \
11 borrowed without a static reference"
12 );
13 // won't compile!
14 // println!("{}", &y);
15 });
16
17 scope.r#async(|| {
18 x += 2;
19 println!(
20 "Variables can be borrowed mutably by one \
21 async as usual: x = {}",
22 x
23 );
24 });
25
26 for _ in 1..=3 {
27 scope.r#async(|| {
28 println!(
29 "Variables can be immutably borrowed \
30 from many asyncs: y = {}",
31 &y
32 );
33 });
34 }
35
36 let z = 2;
37 scope.r#async(|| {
38 println!(
39 "Variables can be borrowed as long as \
40 the reference can outlive the \
41 finish scope: y = {}",
42 &y
43 );
44 // won't compile!
45 // println!("{}", &z);
46 });
47 });
48 }

Figure 6.Working examples demonstrating usages of Fin-
ishScope to allow references in asynchronous tasks that the
Rust borrow checker would otherwise deem unsafe

5 Inheritance and Circular References

5.1 General Approach for Removing Circular

References

One pain point of porting C++ frameworks like Habanero
Selectors to Rust is that often times these frameworks will
contain complex webs of circular references. Cycles can be
relatively benign in C++, but in Rust they can quickly cause
problems. Reference cycles will likely lead to memory leaks
and they can make the construction process impossible to
do safely.
For example, in the C++ Selector implementation, the

selector contains mailboxes, which then contain lambdas,
which reference the containing actor. We solved this partic-
ular issue by separating the actor state–which the lambdas
need to update–from the containing selector.
Another example of this circular structure appears be-

tween the various mailboxes in the selector. Because each
Mailbox is responsible for sending to the matching mail-
boxes on the di�erent actors, the Mailboxes must maintain
contact with one another. In the C++ implementation this
is done by maintaining a pointer back to the containing ac-
tor which then acts as an arbiter for getting messages from
one mailbox’s handler into another mailbox’s conveyor as
an outgoing message. This cycle is harder to break because
of how tightly bound–at least conceptually–the mailbox is
to its conveyor. One solution, however, is to separate the
Conveyors from the Mailboxes, storing each in their own
Array. The array of Conveyors would need to be stored in an
Arc because each Conveyor needs access to the whole array.
Then, each Mailbox could keep track of which Conveyor it
needs to pull from in order to retrieve messages to process.
When the Mailbox needs to send a message, instead of going
to another Mailbox, it can directly access the Conveyor it
needs to transmit over.

The general methodwe have used to untangle these depen-
dencies is to try and decouple the various functionalities as
much as possible. While it made sense to couple the selector
“administration” with the selector state or the Mailbox man-
agement with the Conveyor management in C++, coupling
these responsibilities together made it almost impossible to
specify the structure in safe Rust. As a general rule, when
porting complicated structures like these to Rust, one may
have to give up encapsulation of responsibilities in order to
untangle cyclic references.

5.2 Current Implementation

The latest version of our API takes inspiration from other
actor libraries like the Actix library [11] for Rust. The ap-
plication writer now de�nes a struct which implements the
Selector<‘s, N> trait. N is a usize constant referring to the
number of mailboxes, and ‘s is the associated lifetime of the
selector object and all of its internal handlers. The trait has
one required method:
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fn handlers()

-> MailboxHandlers<'s, Self, N>

and one associated type: Packet. The associated type refers
to the type of packet that will be sent and received by the
selector. The handlers method returns an array of closures
which are the handlers of the selector. Each handler now
takes in a SelectorContext that gives the closure access
to the other mailboxes through which they can send mes-
sages. The handler is also passed a mutable reference to the
state object. This eliminates the need for the handlers to
capture a pointer or other reference to the state object. This
allows the handlers to be written using entirely safe code.
The application writer now calls the function:

fn create(&'s mut self)

-> SelectorAddr<'s, Self, N>

on the custom Selector implementation to get a
SelectorAddr which then behaves as the Selector from
the original C++ API.
In the backend of the API, unsafe code is still present.

This is due to the circular reference structure between mail-
boxes and the sharing of the state data between the various
mailboxes. The former requires the use of MaybeUninit and
the latter requires using a raw mutable pointer to maintain
access to the state object. Under the current model of HClib
Selectors, only one hardware-thread is used to run the run-
time, so it is correct to give message handlers safe, exclusive
access to the selector state.

5.3 Actors Sending Messages to Themselves

Another part of the C++ applications that proved di�cult to
translate to Rust came from the application code manually
manipulating the state simultaneously with the Selector’s
manipulation. In the Rust implementation, the Selector

owns the data while it is processing it, so these parallel ma-
nipulations had to be marked unsafe. The reason that these
manipulations are in-fact safe is because HClib implements
cooperative multithreading with well-de�ned synchroniza-
tion points at which control can change hands. Therefore,
truly simultaneous updates – which would result in race
conditions – are not possible. The fact that these code sec-
tions must be marked unsafe is unsavory, but the required
unsafe serves as a marker for the programmer to pay at-
tention to the potentially delicate code which relies on the
synchronization of HClib.
Ideally, however, we would like to remove all necessary

instances of unsafe code from these applications by creating
a safe way to accomplish the same thing using the API. We
believe that these parallel mutation behaviors need not be
parallel at all. In the applications we have reviewed with
this property, the unsafe mutation can be incorporated into
the �ow of the application by sending messages from the
local actor to itself. This may potentially incur the cost of an
additional mailbox if the update is not one which is already

included in the actor logic, but the overheads for local-only
message passing should be minimal.

6 Evaluation

We wanted to ensure that the gains in safety and produc-
tivity with our Rust interface did not come at the cost of
performance. Rust’s zero-cost abstractions imply that it is
theoretically possible to have no performance sacri�ces.

To assess our runtime’s performance, we selected a subset
of the Bale kernels [4] that were presented in the paper for
the original C++ runtime. Then we compared our new run-
time alongside the original C++ Selectors runtime as well as
the UPC, SHMEM, and Conveyors versions of these applica-
tions. We used the CPU nodes of the Perlmutter supercom-
puter at the National Energy Research Scienti�c Computing
Center (NERSC) for our performance evaluations.
Overall, our benchmark results show that our Rust ver-

sions of the original applications performed on par with the
respective C++ versions. There is a slight exception in the
performance of our Random-Permutation implementation
being signi�cantly slower for a larger number of PEs. We
include these benchmark results in the appendix. Neverthe-
less, we are con�dent that this can be addressed by further
review and re�nement of our Rust library code.

In addition to performance, we also measured the amount
of unsafe code required from application developers, as a
proxy for productivity.

Table 1. Percentage of expressions that were unsafe for
each of the test applications. Calculated by

%unsafe =
Number of unsafe expressions
Total number of expressions using the count-unsafe

utility from h�ps://crates.io/crates/count-unsafe.

Original Re�ned

Histogram 70% 20%

Index Gather 29% 13%

Permute Matrix 45% 36%

Random Permutation 34% 11%

In Table 1, we measured the percentage of unsafe code
that comprised each of the applications. The “Original” col-
umn depicts the percentages that we had with our initial
application implementations. These implementations are a
good proxy for the safety of the original C++ versions. Af-
ter re�ning the API for safety, we were able to cut down
the unsafe percentages of the applications to those in the
“Re�ned” column.

7 Related Work

There are some relevant projects that provide a comparison
point for this work in the runtime space. One is PNNL’s
Lamellar runtime [5], which builds on related Rust work
for the Rust Open Fabrics Interface (ROFI). Lamellar utilizes
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active messages to perform data movement and computation
on an HPC compute cluster. Currently, Lamellar works in
local mode and with transports supported by ROFI, namely
SHMEM and some In�niBand Verbs implementations.
Another inspiration for our work is the Rust implemen-

tation of Conveyors by Bill Carlson [3]. Conveyors focuses
on support for message aggregation and e�cient data move-
ment, and the recent Rust implementation supports the con-
cepts of sessions and value-based collectives on top of Open-
SHMEM 1.4. While this port and Lamellar are both exper-
imental in nature, their approaches provides key insights
into how we can approach the development of a safe and
e�cient Rust-based runtime.

8 Conclusions and Future Work

The biggest potential improvement to our library is imple-
menting HClib completely in Rust. Since we have not for-
mally veri�ed the safety of our Rust interfaces to HClib,
implementing in Rust would provide us the safety guaran-
tees that come with Rust. Furthermore, a purely Rust code
base would signi�cantly improve portability.
We would also like to reduce the amount of necessary

unsafe code written by users, as doing so will greatly re-
duce the programmer’s burden of memory safety and thereby
improve the productivity of users. One signi�cant remaining
instance where a user would need to invoke unsafe, is ac-
cessing the selector state while the selector is running. This
seems to be a common pattern in the Bale mini-applications,
and it creates problems for designing a Rust interface be-
cause it appears to be concurrent mutation of data by both
the selector’s handler and the top-level �nish closure. We
believe it may be possible to use a lifetime token—similar
to FinishScope—to denote permission to access, per the
method laid out in the GhostCell paper by Yanovski et al.
[13].
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A Benchmark Results

For performance evaluations, we use the CPU nodes of the
Perlmutter supercomputer at the National Energy Research
Scienti�c Computing Center (NERSC), which is an HPE

Figure 7. Histogram Kernel Results

Figure 8. Index-Gather Kernel Results

Figure 9. Permute-Matrix Kernel Results

(Hewlett Packard Enterprise) Cray EX supercomputer. Each
node has 2 AMD EPYC 7763 (Milan) CPUs with 64 physical
cores per CPU, 512 GB of DDR4 memory, and 1 network
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Figure 10. Random Permutation Kernel Results

card connected to the HPE Cray Slingshot 11 network. We
fully utilize the 128 physical cores per node, each of which
is mapped to a single PE (actor), and we use 1-16 nodes, re-
sulting in 128-2048 physical cores. In addition to that, we
evaluate 64 cores in a single node.

We investigate the performance of UPC, SHMEM, the orig-
inal Conveyor baseline, and the original C++ actor version,
all of which are available in HClib’s public repository, in ad-
dition to the Rust actor version using four mini-applications
from the Bale Kernels [4, 10] (histogram, index gather, per-
mute matrix, random permutation):

1. Histogram: Using a generated list of random indices
from each PE, the distributed table value at that index
is incremented. It was run with 10,000,000 updates per
PE on a distributed table with 1,000 elements/PE.

2. Index Gather: Executes an asynchronous read of ran-
dom elements from a distributed array. It was run with
10,000,000 reads per PE on a distributed table with
100,000 elements/PE.

3. Permute Matrix: Creates a permuted distributed ma-
trix by applying row and column permutations. It was
run with 100,000 rows of the matrix/PE with an aver-
age of 10 nonzeros per row.

4. Random Permutation: Creates a distributed array
holding a uniform permutation of {0, ..., # − 1}. It was
run with 1,000,000 elements per PE.

References
[1] 2019. Rust RFC: scoped_threads. h�ps://rust-lang.github.io/rfcs/3151-

scoped-threads.html. [Accessed 1-Sep-2023].

[2] Gul A. Agha. 1990. ACTORS - a model of concurrent computation in

distributed systems. MIT Press.

[3] Bill Carlson. [n. d.]. GitHub - wwc559/convey: A conveyor imple-

mentation for Rust — github.com. h�ps://github.com/wwc559/convey.

[Accessed 30-Jun-2023].

[4] Jason Devinney. 2023. Bale Applications. h�ps://github.com/

jdevinney/bale.

[5] Ryan Friese. [n. d.]. GitHub - pnnl/lamellar-runtime: Lamellar is an

asynchronous tasking runtime for HPC systems developed in RUST

— github.com. h�ps://github.com/pnnl/lamellar-runtime. [Accessed

30-Jun-2023].

[6] Max Grossman et al. 2017. A Pluggable Framework for Composable

HPC Scheduling Libraries. IEEE Computer Society, 723–732. h�ps:

//doi.org/10.1109/IPDPSW.2017.13

[7] Akihiro Hayashi, Sri Raj Paul, Youssef Elmougy, Jiawei Yang, and Vivek

Sarkar. 2022. HClib Actor Documentation. h�ps://hclib-actor.com/.

[8] Carl Hewitt et al. 1973. A Universal Modular ACTOR Formalism

for Arti�cial Intelligence. In Proceedings of the 3rd International Joint

Conference on Arti�cial Intelligence. Standford, CA, USA, August 20-23,

1973. William Kaufmann, 235–245.

[9] Shams Mahmood Imam and Vivek Sarkar. 2014. Selectors: Actors with

Multiple Guarded Mailboxes. ACM, 1–14. h�ps://doi.org/10.1145/

2687357.2687360

[10] F. Miller Maley and Jason G. DeVinney. 2019. Conveyors for Streaming

Many-To-Many Communication. InWorkshop on Irregular Applications:

Architectures and Algorithms, IA3 SC 2019. IEEE, 1–8. h�ps://doi.org/

10.1109/IA349570.2019.00007

[11] Yuki Okushi. [n. d.]. GitHub - actix/actix: Actor framework for Rust. —

github.com. h�ps://github.com/actix/actix. [Accessed 30-Jun-2023].

[12] Sri Raj Paul, Akihiro Hayashi, Kun Chen, Youssef Elmougy, and Vivek

Sarkar. 2023. A Fine-grained Asynchronous Bulk Synchronous paral-

lelism model for PGAS applications. Journal of Computational Science

69 (2023), 102014. h�ps://doi.org/10.1016/j.jocs.2023.102014

[13] Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer. 2021.

Ghostcell: separating permissions from data in rust. Proceedings of the

ACM on Programming Languages 5, ICFP (2021), 1–30.

Received 2023-06-29; accepted 2023-07-31

172

https://rust-lang.github.io/rfcs/3151-scoped-threads.html
https://rust-lang.github.io/rfcs/3151-scoped-threads.html
https://github.com/wwc559/convey
https://github.com/jdevinney/bale
https://github.com/jdevinney/bale
https://github.com/pnnl/lamellar-runtime
https://doi.org/10.1109/IPDPSW.2017.13
https://doi.org/10.1109/IPDPSW.2017.13
https://hclib-actor.com/
https://doi.org/10.1145/2687357.2687360
https://doi.org/10.1145/2687357.2687360
https://doi.org/10.1109/IA349570.2019.00007
https://doi.org/10.1109/IA349570.2019.00007
https://github.com/actix/actix
https://doi.org/10.1016/j.jocs.2023.102014

	Abstract
	1 Introduction
	2 Background
	2.1 HClib Actor/Selector Library
	2.2 Rust's Foreign Function Interface and Unsafe Annotation
	2.3 Conveyors

	3 Rust Selectors API
	3.1 Goals
	3.2 Example Applications and Comparisons

	4 Bringing Safety to the API
	4.1 Wrapping Conveyors
	4.2 Role of Finish Construct in Establishing Lifetimes

	5 Inheritance and Circular References
	5.1 General Approach for Removing Circular References
	5.2 Current Implementation
	5.3 Actors Sending Messages to Themselves

	6 Evaluation
	7 Related Work
	8 Conclusions and Future Work
	A Benchmark Results
	References

