
249

Concrete Type Inference for Code Optimization using

Machine Learning with SMT Solving

FANGKE YE, Georgia Institute of Technology, USA
JISHENG ZHAO, Georgia Institute of Technology, USA
JUN SHIRAKO, Georgia Institute of Technology, USA
VIVEK SARKAR, Georgia Institute of Technology, USA

Despite the widespread popularity of dynamically typed languages such as Python, it is well known that they
pose signi�cant challenges to code optimization due to the lack of concrete type information. To overcome this
limitation, many ahead-of-time optimizing compiler approaches for Python rely on programmers to provide
optional type information as a prerequisite for extensive code optimization. Since few programmers provide
this information, a large majority of Python applications are executed without the bene�t of code optimization,
thereby contributing collectively to a signi�cant worldwide wastage of compute and energy resources.

In this paper, we introduce a new approach to concrete type inference that is shown to be e�ective in
enabling code optimization for dynamically typed languages, without requiring the programmer to provide
any type information. We explore three kinds of type inference algorithms in our approach based on: 1)
machine learning models including GPT-4, 2) constraint-based inference based on SMT solving, and 3) a
combination of 1) and 2). Our approach then uses the output from type inference to generate multi-version
code for a bounded number of concrete type options, while also including a catch-all untyped version for
the case when no match is found. The typed versions are then amenable to code optimization. Experimental
results show that the combined algorithm in 3) delivers far superior precision and performance than the
separate algorithms for 1) and 2). The performance improvement due to type inference, in terms of geometric
mean speedup across all benchmarks compared to standard Python, when using 3) is 26.4× with Numba as
an AOT optimizing back-end and 62.2× with the Intrepydd optimizing compiler as a back-end. These vast
performance improvements can have a signi�cant impact on programmers’ productivity, while also reducing
their applications’ use of compute and energy resources.

CCS Concepts: • Software and its engineering→ Compilers; Automated static analysis; Data types and

structures.

Additional Key Words and Phrases: Type Inference, Code Optimization, Python, Machine Learning

ACM Reference Format:

Fangke Ye, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. 2023. Concrete Type Inference for Code Optimization
using Machine Learning with SMT Solving. Proc. ACM Program. Lang. 7, OOPSLA2, Article 249 (October 2023),
28 pages. https://doi.org/10.1145/3622825

1 INTRODUCTION

Python is one of the most widely used programming languages today. It has a rich ecosystem of
libraries and tools. As a high-level programming language, Python’s versatility and user-friendliness
have made it a preferred choice for developers and researchers to build applications and research

Authors’ addresses: Fangke Ye, yefangke@gatech.edu, Georgia Institute of Technology, USA; Jisheng Zhao, jisheng.zhao@
cc.gatech.edu, Georgia Institute of Technology, USA; Jun Shirako, shirako@gatech.edu, Georgia Institute of Technology,
USA; Vivek Sarkar, vsarkar@gatech.edu, Georgia Institute of Technology, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/10-ART249
https://doi.org/10.1145/3622825

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-8545-6116
HTTPS://ORCID.ORG/0000-0003-0334-0492
HTTPS://ORCID.ORG/0000-0002-7900-7680
HTTPS://ORCID.ORG/0000-0002-3433-8830
https://doi.org/10.1145/3622825
https://orcid.org/0000-0002-8545-6116
https://orcid.org/0000-0003-0334-0492
https://orcid.org/0000-0002-7900-7680
https://orcid.org/0000-0002-3433-8830
https://doi.org/10.1145/3622825

249:2 Fangke Ye, Jisheng Zhao, Jun Shirako, and Vivek Sarkar

prototypes in domains including data science [McKinney et al. 2010], machine learning [Abadi
et al. 2015; Paszke et al. 2019], and scienti�c computing [Virtanen et al. 2020].

Despite its advantages in programmability, Python poses signi�cant challenges in terms of code
optimization due to its dynamic typing. A well-established direction for optimizing programs
with dynamic types is to use a just-in-time (JIT) optimizing compiler, with Numba [Lam et al.
2015] being a notable exemplar for Python. However, it is also widely recognized that the extent
of code optimization that can be performed by JIT compilers is limited due to the fact that any
time spent on code optimization contributes to dynamic execution time, as well as issues related
to cold start and the overhead of cold paths. For this reason, even Numba o�ers an alternate
ahead-of-time (AOT) optimization option, but that requires concrete types to be provided ahead
of time by the programmer. Similarly, Intrepydd [Zhou et al. 2020] is a research AOT optimizing
compiler that generates C++ code that can be statically compiled and loaded as a module for use in
a Python application, but it too requires concrete types to be provided by the programmer (albeit
only for function parameters). However, relying on programmers to provide type annotations can
signi�cantly hinder productivity as it can be a time-consuming and error-prone task. Consequently,
a large portion of Python applications remains unoptimized, leading to wastage of compute and
energy resources on a global scale.

In recent years, the considerable progress made in machine learning research has led to ongoing
e�orts to apply machine learning techniques to address the type inference challenge in dynamically-
typed languages, with the goal of alleviating the need for manual type annotations [Allamanis et al.
2020; Hellendoorn et al. 2018; Pradel et al. 2020; Wei et al. 2020]. Typically, these approaches accept
a partially typed program as input and generate probabilistic predictions for variable and expression
types within the program. While these approaches can be helpful for software engineering and
program understanding purposes, these predictions often lack the precision of concrete type
inference needed for code optimization.
There are several recent studies that focus on enhancing the type correctness of machine

learning based type inference by integrating its output with rule-based analysis. TypeWriter
[Pradel et al. 2020] utilizes a gradual type checker to search for a type-correct assignment from
the type predictions made by a machine learning model. OptTyper [Pandi et al. 2020] gathers
logical constraints using rules and natural constraints from machine learning models, subsequently
performing continuous relaxation to incorporate both types of constraints into a single continuous
optimization problem. HiTyper [Peng et al. 2022] incorporates type recommendations frommachine
learning models into static type inference by iteratively alternating between model prediction and
rule-based inference. These methods aim to determine one consistent set of type assignments,
whether those include abstract types or concrete types. As a result, the inferred types may be too
speci�c and only cover a limited number of cases, or too abstract to be useful for code optimization.

In this paper, we address the problem of concrete type inference for code optimization. The goal is
to design a method to statically generate a manageable set of probable and consistent concrete type
assignments for a given part of an input program (such as one or more functions in the program).
By doing so, we can facilitate static optimization of the speci�ed part of the program using the
inferred type information. Note that our focus is not on performing whole-program static type
inference, as enforcing static typing for the entire program might impede programming �exibility.

We explore 1) a variety of machine learning type inference models, as well as 2) constraint-based
type inference using an SMT solver to help solve this problem. Recognizing the limitations inherent
in both approaches, we introduce a novel method 3) that combines both approaches so as to fuse
their strengths to overcome their individual drawbacks.1 This is achieved by encoding machine

1Source code available at https://github.com/habanero-lab/cti-ml-smt.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

https://github.com/habanero-lab/cti-ml-smt

Concrete Type Inference for Code Optimization using Machine Learning with SMT Solving 249:3

learning predictions as constraints and applying progressive constraint relaxation to prioritize the
discovery of the most likely solutions.
The key contributions presented in this paper can be summarized as follows:

(1) We develop a variety of machine learning-based type inference methods for concrete type
inference for a NumPy-focused subset of Python, including a) a frequency-based prediction
model, b) a neural network trained from scratch with an architecture inspired by prior work, c)
a �ne-tuned Transformer model pre-trained on a large multi-programming language corpus,
and d) a prompt-based zero-shot type inference that leverages the cutting-edge GPT-4 large
language model.

(2) We present a concrete type inference method based on SMT solving for the subset of Python
considered above, incorporating array ranks into the type system to facilitate code optimiza-
tion.

(3) We propose a novel approach for integrating machine learning and SMT solving for concrete
type inference, aiming to generate type-correct parameter type combinations that e�ectively
cover the intended types without generating an excessive number of code variants.

(4) We conduct a comprehensive evaluation and comparison of machine learning-based type
inference models, SMT solving-based type inference methods, and their integration. The
experimental results demonstrate that our combined approach, 3), achieves signi�cantly
higher precision and performance compared to the individual methods, 1) and 2).

2 BACKGROUND

2.1 Concrete Type Inference

Concrete type inference is the process of determining the concrete type (i.e., implementation type)
of variables in a program at compile time. It di�ers from many conventional type inference methods
that deduce abstract types, which describe the properties and interfaces of variables. By providing
information on the implementation details of variables, concrete type inference can facilitate more
precise code optimization. Previous research has explored several approaches for inferring concrete
types, such as methods employing the Cartesian product algorithm [Agesen 1995] and constraint-
based techniques [Plevyak and Chien 1994]. While past work has also explored the use of machine
learning for type inference (e.g., [Allamanis et al. 2020; Hellendoorn et al. 2018; Pradel et al. 2020;
Wei et al. 2020]), that pask work has typically not focused on concrete type inference for code
optimization.

2.2 SMT Solver and SMT Based Type Inference

SMT (Satis�ability Modulo Theories) is an approach for determining the satis�ability of mathemat-
ical formulas. An SMT solver is a software tool for solving this kind of problem which involves a
combination of theories, including Boolean and integer arithmetic. It can automatically determine
whether a given formula is satis�able by considering the constraints imposed by the underlying
theories. SMT solvers are widely used in various areas of the computing industry, such as model
checking, software/hardware veri�cation, and automated theorem proving [Barrett and Tinelli
2018].
SMT solvers have been applied to the type inference problem, which can be formulated as a

logical formula that deduces the type of a variable or expression in a given program. By translating
typing rules into a set of constraints, an SMT solver can be utilized to determine whether these
constraints are satis�able and identify a set of type assignments that satisfy them [Hassan et al.
2018]. While there has been past work on combining rules-based inference with machine learning
(e.g., [Pandi et al. 2020; Peng et al. 2022; Pradel et al. 2020]), to the best of our knowledge, we are

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

249:4 Fangke Ye, Jisheng Zhao, Jun Shirako, and Vivek Sarkar

unaware of any past work that has combined SMT solvers with machine learning for concrete type
inference.

2.3 Intrepydd Programming Language

The Intrepydd programming language [Zhou et al. 2020] introduced a subset of Python that is
amenable to ahead-of-time (AOT) compilation of selected Python functions into C++. It is intended
for writing kernel functions rather than complete or main programs. The C++ code generated from
Intrepydd kernels can be imported into a Python application or a C++ application. A key constraint
in the Intrepydd subset of Python is the requirement that Intrepydd function de�nitions include
type annotations for parameters and return values. Given these type annotations, the Intrepydd
compiler statically infers the types of local variables and expressions. The library knowledge base
included in the Intrepydd tool chain speci�es type rules for a wide range of library functions used
by the Intrepydd programs, many of which are based on Python standard libraries such as NumPy.
Combined with the library knowledge base that also provides per-function data�ow information,
the statically inferred data types serve as the basis of: program analyses including def/use, data�ow,
and dependence analyses; high-level program optimizations including loop invariant code motion,
dense/sparse array operator fusion, and array allocation and slicing optimizations; and C++ code
generation from the intermediate representation resulting from these code optimizations. In the
�nal step, the generated C++ code is compiled into a binary module that can be invoked by the
host program.

In this work, we aim to target the subset of Python utilized by Intrepydd, with types de�ned in
Fig. 1. The type system incorporates array rank and tuple arity, requires homogeneous container
types, and does not support �rst-class functions or nested function de�nitions. Additionally, scalar
types are presented as zero-dimensional array types.

g F None | Array(3C~?4,=38<) | SparseMat(3C~?4)

| List(g) | Dict(g, g) | Heap(g, g) | Tuple(g, 0A8C~)

3C~?4 F int32 | int64 | float32 | float64 | bool

=38<,0A8C~ F non-negative integers

[F g | Function(g, g)

Fig. 1. Types of Intrepydd.

3 OVERVIEW OF OUR APPROACH

In this paper, we address the problem of concrete type inference for enabling compiler optimizations
with multi-version code generation. To be speci�c, the goal is to design a method to generate a
likely and consistent2 set of function parameter types based on a given input program. The rationale
behind our focus on function parameter types is that their determination simpli�es the inference
for other types in the function, including return types and variable types. Once function parameter
types are speci�ed, the program can be fully typed and optimized by ahead-of-time optimizing
compiler approaches for Python such as Numba AOT [Lam et al. 2015] and Intrepydd [Zhou et al.
2020]. We propose a novel approach to the concrete type inference problem by using a combination
of machine learning and SMT solving.
An overview of our approach is shown in Fig. 2. To motivate our approach, we include an

example function in the �gure. By applying a machine learning type predictor to this function, we
2Throughout the paper, we use the terms “consistent”, “type-check”, “type-correct”, and “valid” interchangeably to denote a
function parameter type combination that does not lead to a type error.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

Concrete Type Inference for Code Optimization using Machine Learning with SMT Solving 249:5

Machine Learning
Type Predictor

Type Constraint
Generator

SMT Solver

Code Generator

Type Inference

Multi-versioned Code

def f1(x: Array(int32,1),
 y: Array(int32,1)):
 ...
def f2(x: Array(int64,1),
 y: Array(int64,1)):
 ...
...

Type Constraints
array_rank(tx)
 >= array_rank(ty)
array_dtype(tx)
 = dtype_coercion(
 array_dtype(tx),
 array_dtype(ty))
...

Untyped / Partially Typed Code

def f(x, y):
 x += y
 ...

ML Constraints
tx = Array(int,0)
 or tx = Array(int,1)
 or tx = ...
ty = Array(float,0)
 or ty = Array(int,1)
 or ty = ...

SMT Solver

Code Generator

Multi-versioned Code With
Excessive Number of Versions

def f1(x: Array(int32,0),
 y: Array(int32,0)):
 ...
def f2(x: Array(int64,0),
 y: Array(int64,0)):
 ...
def f3(x: Array(float32,0),
 y: Array(float32,0)):
 ...
def f4(x: Array(float64,0),
 y: Array(float64,0)):
 ...
def f5(x: Array(int32,1),
 y: Array(int32,0)):
 ...
def f6(x: Array(int64,1),
 y: Array(int64,0)):
 ...
def f7(x: Array(float32,1),
 y: Array(float32,0)):
 ...
def f8(x: Array(float64,1),
 y: Array(float64,0)):
 ...
def f9(x: Array(int32,1),
 y: Array(int32,1)):
 ...
def f10(x: Array(int64,1),
 y: Array(int64,1)):
 ...
...

Code Generator

Multi-versioned Code With Type Errors

def f1(x: Array(int32,0),
 y: Array(float32,0)):
 ...
def f2(x: Array(int32,0),
 y: Array(float64,0)):
 ...
def f3(x: Array(int64,0),
 y: Array(float32,0)):
 ...
def f4(x: Array(int64,0),
 y: Array(float64,0)):
 ...
def f5(x: Array(int32,0),
 y: Array(int32,1)):
 ...
def f6(x: Array(int32,0),
 y: Array(int64,1)):
 ...
def f7(x: Array(int64,0),
 y: Array(int32,1)):
 ...
def f8(x: Array(int64,0),
 y: Array(int64,1)):
 ...
def f9(x: Array(int32,1),
 y: Array(int32,1)):
 ...
def f10(x: Array(int64,1),
 y: Array(int64,1)):
 ...
...

1) 2)

3)

Fig. 2. Overview of our framework: 1) The le� box illustrates the output obtained by only using machine
learning models; 2) The right box illustrates the output obtained by only using type constraints; 3) The
center box illustrates the output obtained by using the combination of machine learning and SMT solving
introduced in this paper. The dashed lines and boxes illustrate the potential outputs of individual approaches.
Red-colored code denotes the presence of type errors by using approach 1), while blue-colored code represents
the excessive number of versions generated by approach 2) relative to the combined approach 3).

can obtain several potential types for each argument, as depicted in the left part of the �gure as
approach 1). When combined, these predictions may generate numerous combinations of parameter
types, and many of them might not even type-check. As an illustration, consider the red-colored
functions in the �gure, whose parameter types are predicted by a machine learning model. In these
functions, type-checking errors can occur for the code x += y since the type of y cannot be coerced
or broadcasted to the type of x. On the other hand, a constraint-based approach can be utilized
to generate type constraints from the code, as shown in the right part of the �gure as approach
2). By solving these constraints, we can generate multiple parameter type combinations that are
type-correct. However, the number of potential solutions can be extremely large, and impractical
for use in static code optimization.

To overcome the issues present in these two approaches, we propose a hybrid approach 3) in the
center of the �gure. The predictions from the machine learning models are encoded as constraints.
These constraints, along with the type constraints, are provided as input to an SMT solver, which
subsequently generates multiple parameter type combinations that are both highly likely and
type-correct. Approach 3) then uses the output from the SMT solver to generate multi-version code
for a bounded number of concrete type options, while also including a catch-all untyped version
for the case when no match is found. All the typed versions are then amenable to extensive code
optimization.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

249:6 Fangke Ye, Jisheng Zhao, Jun Shirako, and Vivek Sarkar

4 CONCRETE TYPE INFERENCE BY COMBINING MACHINE LEARNING AND SMT

SOLVING

In this section, we begin by presenting a number of machine learning type inference techniques
tailored to our concrete parameter type inference problem, all of which represent di�erent alterna-
tives for approach 1). Next, we introduce our SMT solving type inference that represents approach
2). Lastly, we outline how we combine both methodologies to achieve their respective bene�ts
while also addressing their limitations, thus creating a better-optimized approach 3).

4.1 Machine Learning Type Inference

Machine learning type inference models can often leverage the naturalness of human-written
code by exploiting patterns in variable names, syntactic structures, and other features typically
neglected by traditional type inference approaches [Allamanis et al. 2018]. These models are capable
of producing multiple potential types along with their probabilities. This makes them well-suited
for our type inference problem, as we lack su�cient type information to deduce a de�nitive type,
but can still utilize machine learning to infer a few types of highest probability.

This section focuses on the machine learning approaches we have employed to solve our concrete
type inference problem. Given the unique domain of our problem, it is not feasible to leverage
existing machine learning type inference models directly. Thus, we have integrated various repre-
sentative models to compare their relative e�cacy.
In this section, we �rst de�ne the scope of types that our machine learning models attempt to

predict. Then, we introduce the methodology of constructing our dataset tailored to our particular
problem. After that, we present the four distinct machine learning models that we have explored.
Finally, we discuss the limitations of machine learning methods when applied to concrete type
inference.

4.1.1 Type Prediction Space. Our machine learning models predict parameter types from a subset
of the types de�ned in Fig. 1. We detail the design decisions for this type subspace, along with their
rationales, in Table 1. The syntax de�ning this type prediction space is shown in Fig. 3.

g F 3C~?4 | Array(3C~?4,=38<) | List(g) | Dict(int, g)

3C~?4 F int | float | bool

=38< F 1 | 2 | 3

Fig. 3. Syntax of types predicted by machine learning models.

Constraining the type space may lead to situations where the correct parameter types cannot be
predicted because they are outside the prediction space. However, this drawback can be addressed
by combining machine learning type inference with the SMT solving type inference (Section 4.2),
which we discuss in more detail in Section 4.3.

4.1.2 Dataset Construction. In order to train our machine learning models for predicting function
parameter types in Intrepydd, it would be ideal to use a dataset that includes Intrepydd source
code and parameter type annotations. However, this is not feasible due to the fact that Intrepydd is
relatively new and there are few programs currently written using it. Nonetheless, since Intrepydd
is a subset of Python and many Intrepydd types can be mapped to built-in Python or NumPy types,
we can instead use a dataset containing programs written in Python/NumPy, and rely on the models
to transfer their knowledge learned from this dataset to Intrepydd programs.
Although there are public datasets available for training type inference models for Python

[Allamanis et al. 2020; Mir et al. 2021; Raychev et al. 2016], they are not suitable for our case. Firstly,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

Concrete Type Inference for Code Optimization using Machine Learning with SMT Solving 249:7

Table 1. Design decisions for the type prediction space.

Type Design decision and rationale

Scalar types We represent a scalar type directly by its element type, rather than a 0-dimensional array. This simpli�es
the models’ output without introducing any ambiguity.

Array
element
types with
di�erent bit
widths

We do not di�erentiate between integer and �oating-point types based on their bit width. This is because
it is often challenging to infer the precise bit width solely from the source code, unless there is explicit
type casting. Additionally, many programs are written in a way that allows data with di�erent bit widths
to function interchangeably. Including bit width in the dataset also reduces the number of data points
for each type involving integer and �oating-point types, making it more challenging for the machine
learning models to learn.

Array We cap the rank of arrays at 3, as most code in our dataset operates on arrays with ranks no greater than
3. This constraint enables the model to focus on the most common cases.

Dict The Dict type only takes integers as keys due to an implementation limit imposed by Intrepydd’s C++
back-end. By constraining the type space in this way, we prevent the models from predicting unsupported
Dict types.

None We do not predict the None type, as it is usually used as the return type of functions that do not return
a value. Since we are only concerned about function parameter types, predicting a None type is rarely
necessary.

SparseMat,
Heap, and
Tuple

We do not predict SparseMat, Heap, and Tuple types because it is challenging to construct a dataset
containing these types. SparseMat and Heap are intrinsic types in Intrepydd and have no corresponding
types in Python/NumPy. While tuples are often seen in Python, static-arity heterogeneous tuples are
rarely used as parameter types.

these datasets contain a variety of Python projects, which may not be NumPy-intensive and thus
not suitable for our speci�c case that focuses heavily on array operations. Secondly, their type
labels are often not concrete enough, with annotations such as List[Any]. Additionally, NumPy
arrays are usually annotated with np.ndarray without any information about element type and
rank, which is not helpful for our purpose.
Therefore, we created our dataset from the source code of SciPy. We chose SciPy because it

heavily utilizes NumPy and includes many programs for scienti�c computing, which is the domain
Intrepydd is targeting. To obtain precise concrete type information, we executed SciPy’s test suite
and dynamically collected the runtime argument types for all functions using a library called
MonkeyType,3 which we modi�ed to support extracting the element types and ranks of NumPy
arrays. Subsequently, we extracted and deduplicated pairs of (function source code, argument
types) to form our SciPy dataset. The source code was stripped of type annotations, comments, and
docstrings, and we also �ltered out types that could not be expressed using the syntax in Fig. 3.

4.1.3 Frequency-Based Model. To establish a baseline, we employed a simple model that predicts
the most common types found in the training set. This model, which we refer to as Freq going
forward, is e�ective in many cases due to the highly concentrated distribution of types in many
programs, as noted by [Mir et al. 2021].

4.1.4 DeepTyper-FS: A Variant of DeepTyper Trained From Scratch. We developed a second model,
an end-to-end deep learning type predictor, by utilizing the underlying neural network architecture
of DeepTyper [Hellendoorn et al. 2018], and additionally incorporating an improved code tokenizer
and an RNN-based type decoder. We trained this model from scratch (i.e., starting from randomly
initialized weights) using our SciPy dataset.

3https://github.com/Instagram/MonkeyType

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

https://github.com/Instagram/MonkeyType

249:8 Fangke Ye, Jisheng Zhao, Jun Shirako, and Vivek Sarkar

def f (x)y, : x += y<IND> <DED>

Embedding

Bi-directional RNN

+ Mean

Bi-directional RNN

Type Decoder (RNN)

<SOS> Array int 1 <EOS> <SOS> Array int 0 <EOS>

+ Mean

Fig. 4. Neural network architecture of DeepTyper-FS.

Neural Network Architecture. The architecture of DeepTyper-FS is shown in Fig. 4. It consists of
two bi-directional RNNs with a consistency layer in between. The details of this architecture can
be found in [Hellendoorn et al. 2018]. Di�erent from the original method, we employ a subword
tokenizer based on byte-pair encoding [Sennrich et al. 2016]. For type prediction, we take the
second RNN’s output vectors at positions of the function parameter identi�ers and feed them into
an RNN-based type decoder, which outputs a sequence of type tokens for each parameter.

Training Objective. The objective is to maximize the probability of inferring the correct parameter
types, provided as labels in the training set, given the input source code. This is achieved by
minimizing the average cross-entropy loss associated with predicting each type token across the
entire training set.

4.1.5 CodeT5-FT: Fine-Tuned CodeT5. Pre-trained large Transformer models on source code have
demonstrated exceptional performance in tasks like code completion, comment generation, and
code synthesis [Xu et al. 2022]. In light of such capabilities, we have developed our third model
for type inference by �ne-tuning CodeT5, a state-of-the-art code-aware pre-trained Transformer
model [Wang et al. 2021].

def f (x)y, : x += y<IND> <DED>

CodeT5 Encoder (Transformer Encoder)

CodeT5 Decoder (Transformer Decoder)

Output Sequence

(a) CodeT5

Type Decoder (RNN)

<SOS> Array int 1 <EOS> <SOS> Array int 0 <EOS>

def f (x)y, : x += y<IND> <DED>

CodeT5 Encoder (Transformer Encoder)

(b) CodeT5-FT

Fig. 5. Neural network architectures of CodeT5 and CodeT5-FT.

Neural Network Architecture. In Fig. 5, we show the architectures of both CodeT5 and CodeT5-FT.
CodeT5 employs an encoder-decoder architecture in which the tokenized input is converted into
vector representations by a Transformer encoder. These encoded vectors are then decoded into an
output sequence by a Transformer decoder. Our CodeT5-FT model utilizes only the CodeT5 encoder
and appends to it an RNN-based type decoder (the same building block used in DeepTyper-FS in
Section 4.1.4).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

Concrete Type Inference for Code Optimization using Machine Learning with SMT Solving 249:9

Fine-Tuning. We use the same dataset and loss function as in the training of DeepTyper-FS to
�ne-tune CodeT5-FT. The CodeT5 encoder’s weights are initialized using the pre-trained weights,
while the type decoder’s weights are initialized randomly.

4.1.6 Zero-Shot Prompting With GPT-4. In recent years, there has been signi�cant progress in
natural language processing, which can be largely attributed to the development of large language
models (LLMs) [Brown et al. 2020; Chowdhery et al. 2022; Radford et al. 2019]. GPT-4, one of
the most advanced LLMs currently available, has shown outstanding performance in various
professional and academic tasks [OpenAI 2023]. In this paper, we investigated the potential of
GPT-4 to perform type inference through zero-shot prompting.

Please infer the types of function parameters in a program
consisting of one or more functions. The syntax of types
is de�ned as

<t> ::= <type>
| Array(<dtype>, <ndim>)
| List(<t>)
| Dict(int, <t>)

<dtype> ::= int | �oat | bool
<ndim> ::= 1 | 2 | 3

Please generate the top {num_preds} most proba-
ble types for each parameter using only types generated
from the start symbol <t>. Respond in the format "pa-

rameter_name: t1 | t2 | ...", with types sorted by their

likelihood from highest to lowest. Please generate

exactly {num_preds} types per parameter and do not

include any additional information in your response.

The program is given below:

{src}

(a) Prompt template.

Based on the code provided, I am unable to determine the
exact types of the function parameters. However, I can
provide the top 3 most probable types for each param-
eter using only types generated from the start symbol <t>:

Parameter x:
1. int
2. �oat
3. Array(int, 1)

Parameter y:
1. int
2. �oat
3. Array(int, 1)

These types are suggested based on the provided
code, but they may not necessarily be the only valid
types. The exact types would depend on the speci�c
requirements and context of your program.

(b) Response without forma�ing instructions.

x: int | �oat | Array(int, 1)
y: int | �oat | Array(int, 1)

(c) Response with forma�ing instructions.

Fig. 6. Prompt template for GPT-4 and possible responses with/without forma�ing instructions (text in bold).

Zero-Shot Prompt-Based Type Inference. To use GPT-4 for type inference, we provide it with
natural language instructions, or prompts. By providing a prompt as a pre�x, the model generates a
response message through text completion. This method does not require the model to be re-trained
and we do not provide any examples in the prompt, making it a zero-shot approach. The prompt
template we designed is shown in Fig. 6a.

We specify the syntax of the types to be predicted, the number of predictions required for each
parameter, the program source code, and output formatting instructions in the prompt. Note that we
do not provide the language’s de�nition or the meanings of types. Since we perform type inference
on a subset of Python, we expect GPT-4 to use its own knowledge of Python.

Response Formatting. Without explicit instruction on output formatting, GPT-4 responds in
various formats and often provides a natural language explanation of its predictions. An example of

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

249:10 Fangke Ye, Jisheng Zhao, Jun Shirako, and Vivek Sarkar

such responses is illustrated in Fig. 6b. Thismakes it challenging to integrate it into an automatic type
inference and compilation pipeline. To tackle this issue, we incorporated formatting instructions
into our prompts, as highlighted in bold in Fig. 6a. We have discovered that GPT-4 can comprehend
these instructions and generate responses in the speci�ed format most of the time (an example
response is shown in Fig. 6c), with the occasional exception of producing fewer predictions than
speci�ed.

4.1.7 Limitations of Machine Learning Models for Concrete Type Inference. While machine learning
type inference can provide useful predictions, it can have limitations in the context of concrete type
inference for compilation, where the goal is to obtain consistent parameter types for compiling
optimized versions of the input code. The precision of machine learning models may be inadequate,
resulting in missed correct types and no valid parameter type sets. In addition, given multiple
predictions per parameter, we are left with an exponential number of combinations, many of which
may not be valid.

4.2 SMT Solving Type Inference

As discussed in Section 4.1.7, machine learning type inference may produce an enormous number of
invalid parameter type combinations. Filtering out these invalid combinations using a type checker
can be intractable when the number of combinations is large. On the other hand, constraint-based
type inference has the ability to e�ciently discard invalid types during constraint solving, which
makes it a suitable option for addressing this issue.
In this section, we present our constraint-based concrete type inference method using an SMT

solver. We begin by introducing the type encoding, followed by a detailed discussion of the genera-
tion of type constraints. We then explain how we extract valid parameter type combinations using
SMT solving and discuss some limitations of this approach.

4.2.1 Type Encoding. We encode the types de�ned in Fig. 1 as algebraic data types, which are
included in the latest SMT-LIB standard [Barrett et al. 2017] and are supported by several SMT
solvers [Barbosa et al. 2022; De Moura and Bjørner 2008]. The de�nition of these algebraic data
types, expressed in Haskell syntax for simplicity, is shown below:

data DType = bool | int32 | int64 | float32 | float64

data Type = None

| Array { array_dtype :: DType, array_ndim :: Int }

| Heap { heap_ktype :: Type, heap_vtype :: Type }

| SparseMat { sparsemat_dtype :: DType }

| Dict { dict_ktype :: Type, dict_vtype :: Type }

| List { list_etype :: Type }

| Tuple { tuple_etype :: Type, tuple_arity :: Int }

Accessor functions such as array_dtype and list_etype are de�ned to retrieve the constituting
type from a given type. Tester predicates, represented by symbols like is_array and is_dict, are also
de�ned for data types in order to determine their respective categories.

4.2.2 Type Constraints. We consider four kinds of type constraints: type validity constraints, typing
constraints, �nite type space constraints, and uniform bit width constraints. A detailed explanation of
these constraints is presented below.

Type Validity Constraints. The type constructors de�ned in Section 4.2.1 can create invalid types,
such as an array type with a negative rank or a dictionary type with a 2-d array key type, which is
not supported. To avoid such cases, we create type validity constraints using the predicate de�ned

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

Concrete Type Inference for Code Optimization using Machine Learning with SMT Solving 249:11

Table 2. Auxiliary definitions for constructing type constraints.

Term De�nition

libfuncnames A set of Intrepydd library function names.
libfunctypes(83) A mapping from a library function name 83 to its candidate function types.
dtype_coercion(31, 32) A function that takes in array element types, 31 and 32, and returns their coerced type.
is_scalar(C) is_array(C) ∧ array_ndim(C) = 0
is_bool(C) C = Array(bool, 0)
is_int(C) is_scalar(C) ∧ (array_dtype(C) = int32 ∨ array_dtype(C) = int64)

is_�oat(C) is_scalar(C) ∧ (array_dtype(C) = float32 ∨ array_dtype(C) = float64)

below (is_scalar and is_int are de�ned in Table 2):

is_valid_type(C) ≡ (is_array(C) ⇒ array_ndim(C) ≥ 0)

∧ (is_list(C) ⇒ is_valid_type(list_etype(C)))

∧ (is_dict(C) ⇒ is_int(dict_ktype(C)) ∧ is_valid_type(dict_vtype(C)))

∧ (is_heap(C) ⇒ is_scalar(heap_ktype(C)) ∧ is_valid_type(heap_vtype(C)))

∧ (is_tuple(C) ⇒ is_valid_type(tuple_etype(t)) ∧ tuple_arity(C) ≥ 0)

We apply the is_valid_type predicate to the type of every expression in the input program and
add the resulting terms as constraints.

Typing Constraint Generation. To generate typing constraints, we utilize syntax-guided constraint
generation rules presented in Fig. 7, which leverage auxiliary de�nitions in Table 2. Expressions are

typed using the judgment Γ `4 4 : C,� , where Γ is the typing context (a mapping from variable
names to types), 4 is the expression, C is its type, and � is the set of constraints generated. For

statements, including function de�nitions and blocks, we use the typing judgment Γ `B B → C,� ,
where B is the statement, C is the return type of the enclosing function implied by B , and� is the set
of constraints generated.

Note that most statements generate a return type of None, but this does not necessarily indicate
that the enclosing function returns nothing. A non-None return type may be produced by a return
statement within the same function body. Rules such as Block and If in Fig. 7 aggregate the return
types implied by enclosed statements and ensure that they are consistent.
We have de�ned an additional set of rules for Intrepydd’s library functions that constrain the

types of the arguments and the returned value for each call site. Rule LibFuncId in Fig. 7 serves
as the entry point for these rules. Due to space limitations, we do not list the rules for the library
functions in this paper. We also support the use of existing (potentially incomplete) type annotations
as additional constraints. The corresponding constraint generation rules are omitted from Fig. 7.

We refer to the typing constraints generated by the rules introduced above, along with the type
validity constraints, as type-correctness constraints.

Finite Type Space Constraints. The type space de�ned in Fig. 1 is unbounded because types are
de�ned recursively and there is no maximum value for array rank and tuple arity. This can lead to
situations where a program has an unbounded number of valid parameter type combinations. This
raises a problem because we need to obtain a limited number of parameter type combinations for
the purpose of compilation. To mitigate this issue, we introduce additional constraints to restrict
the type space of parameter types to a �nite set.

Speci�cally, we set a maximum constant value for array rank and tuple arity, and limit the depth
of the type syntax tree for parameter types. This is accomplished by de�ning a predicate similar

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

249:12 Fangke Ye, Jisheng Zhao, Jun Shirako, and Vivek Sarkar

Typing judgment for expressions: Γ `4 4 : C,� Typing judgment for statements: Γ `B B → C,�

Γ `4 1>>;2>=BC : Array(3, bool), ∅
Bool

C fresh

Γ `4 8=C2>=BC : C, {is_int(C) }
Int

C fresh

Γ `4 5 ;>0C2>=BC : C, {is_�oat(C) }
Float

83 ∈ libfuncnames * ≡ libfunctypes(83) C fresh

Γ `4 83 : C,
{∨

D∈*
C = D

} LibFuncId 83 ∉ libfuncnames Γ (83) = C

Γ `4 83 : C, ∅
Id

Γ `4 41 : C1,�1 Γ `4 42 : C2,�2
3 ≡ dtype_coercion(array_dtype(41), array_dtype(42))

= ≡ max(array_ndim(41), array_ndim(42))
�′ ≡ {is_array(41), is_array(42) }

Γ `4 41 >?0 42 : Array(3,=),�
′ ∪�1 ∪�2

ArithBin

Γ `4 41 : C1,�1 Γ `4 42 : C2,�2
= ≡ max(array_ndim(41), array_ndim(42))

�′ ≡ {is_array(41), is_array(42) }

Γ `4 41 >?1 42 : Array(bool, =),�
′ ∪�1 ∪�2

BoolBin

Γ `4 4 : C,� 3 ≡

{
array_dtype(4) >?D is + or −

bool >?D is not

Γ `4 >?D 4 : Array(3, array_ndim(4)), {is_array(4) } ∪�
Unary

Γ `4 41 : C1,�1 . . . Γ `4 4= : C=,�=

C ′ fresh �′ ≡ {C1 = C ′, . . . , C= = C ′ }

Γ `4 (41, . . . , 4=) : Tuple(C
′, =),�′ ∪�1 ∪ . . . ∪�=

Tuple

Γ `4 41 : C1,�1 . . . Γ `4 4= : C=,�= C ′ fresh �′ ≡ {C1 = C ′, . . . , C= = C ′ }

Γ `4 [41, . . . , 4=] : List(C
′),�′ ∪�1 ∪ . . . ∪�=

List

Γ `4 41,1 : C1,1,�1,1 Γ `4 41,2 : C1,2,�1,2 . . . Γ `4 4=,1 : C=,1,�=,1 Γ `4 4=,2 : C=,2,�=,2
C ′1, C

′
2 fresh �′ ≡ {C1,1 = C ′1, C1,2 = C ′2, . . . , C=,1 = C ′1, C=,2 = C ′2 }

Γ `4 {41,1 : 41,2, . . . , 4=,1 : 4=,2 } : Dict(C
′
1, C
′
2),�

′ ∪�1,1 ∪�1,2 ∪ . . . ∪�=,1 ∪�=,2
Dict

Γ `4 4 : C,� Γ `4 41 : C1,�1 C ′ fresh
�′ ≡ { (is_array(C) ∧ array_ndim(C) = 1 ∧ is_int(C1) ∧ C

′
= Array(array_dtype(C), 0))∨

(C = List(C ′) ∧ is_int(C1)) ∨ C = Dict(C1, C
′) }

Γ `4 4 [41] : C
′,� ′ ∪� ∪�1

SubscriptSingle

Γ `4 4 : C,� Γ `4 41 : C1,�1 . . . Γ `4 4= : C=,�= = > 1 C ′ fresh
�′ ≡ {is_array(C) ∧ array_ndim(C) = = ∧ is_int(C1) ∧ . . . ∧ is_int(C=) ∧ C

′
= Array(array_dtype(C), 0) }

Γ `4 4 [41, . . . , 4=] : C
′,� ′ ∪� ∪�1 ∪ . . . ∪�=

SubscriptMulti

Γ `4 83 : C,� Γ `4 41 : C1,�1 . . . Γ `4 4= : C=,�= C ′ fresh

Γ `4 83 (41, . . . , 4=) : C
′, {C = Function((C1, . . . , C=), C

′) } ∪� ∪�1 ∪ . . . ∪�=

Call

Γ `4 4 : C,�

Γ `B return 4 → C,�
Return

Γ `4 41 : C1,�1 Γ `4 42 : C2,�2

Γ `B 41 = 42 → None, {C1 = C2 } ∪�1 ∪�2
Assign

Γ `4 41 : C1,�1 Γ `4 42 : C2,�2
�′ ≡ {is_array(41), is_array(42), array_ndim(41) ≥ array_ndim(42),

array_dtype(41) = dtype_coercion(array_dtype(41), array_dtype(42)) }

Γ `B 41 >?0 = 42 → None,� ′ ∪�1 ∪�2
AugAssign

Γ `4 41 : C1,�1 Γ `4 42 : C2,�2 Γ `B 1 → C3,�3
�′ ≡ { (is_array(C2) ∧ array_ndim(C2) = 1 ∧ C1 = Array(array_dtype(C2), 0))∨

C2 = List(C1) ∨ (is_dict(C2) ∧ dict_ktype(C2) = C1) }

Γ `B for 41 in 42 : 1 → C3,�
′ ∪�1 ∪�2 ∪�3

For

Γ `4 4 : C1,�1 Γ `B 1 → C2,�2

Γ `B while 4 : 1 → C2, {is_bool(C1) } ∪�1 ∪�2
While

Γ `4 4 : C,� Γ `B 11 → C1,�1 Γ `B 12 → C2,�2 C ′ fresh
�′ ≡ {C1 = None ∨ C1 = C ′, C2 = None ∨ C2 = C ′,
C1 ≠ None ∨ C2 ≠ None ∨ C ′ = None, is_bool(C) }

Γ `B if 4 : 11 else : 12 → C ′,� ′ ∪�1 ∪�2
If

Γ `B B1 → C1,�1 . . . Γ `B B= → C=,�= C ′ fresh

�′ ≡
{
C1 = None ∨ C1 = C ′, . . . , C= = None ∨ C= = C ′,(∨=

8=1
C8 ≠ None

)
∨ C ′ = None

}
Γ `B B1 . . . B= → C ′,� ′ ∪�1 ∪ . . . ∪�=

Block

Γ `4 83 : C,� Γ, 831 : C1, . . . , 83= : C= `B 1 → CA ,�1

�′ ≡ {C = Function((C1, . . . , C=), CA) }

Γ `B def 83 (831, . . . , 83=) : 1 → None,� ′ ∪� ∪�1

Func

Fig. 7. Typing constraint generation rules.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

Concrete Type Inference for Code Optimization using Machine Learning with SMT Solving 249:13

to is_valid_type in Section 4.2.2, but with the recursion unfolded a constant number of times. We
apply this predicate to parameter types, and incorporate the resulting terms as constraints.

Uniform Bit Width Constraints. Another major reason for an excessive number of valid parameter
type combinations is that, in many cases, array element types with di�erent bit widths can be
used interchangeably. This results in an exponential increase in the number of type combinations
when compared to cases where bit width distinctions are ignored. To mitigate this issue, we
enforce uniform bit widths for integers and �oating-point numbers in parameter types within a
program. Speci�cally, we ensure that the integer element types of arrays in parameter types are
either all int32 or all int64, and the same applies to �oating-point numbers (all float32 or all
float64). However, it is still possible for integer types and �oating-point types within a program
to have di�erent bit widths. These constraints can be generated by modifying the predicate used for
generating the �nite type space constraints. Speci�cally, for an array type C , we add the following
constraint:

array_dtype(C) = 3C8 ∨ array_dtype(C) = 3C 5 ∨ array_dtype(C) = bool

where 3C8 and 3C 5 are shared within a program and subject to:

(3C8 = int32 ∨ 3C8 = int64) ∧ (3C 5 = float32 ∨ 3C 5 = float64)

4.2.3 Valid Type Combination Extraction. The objective of our concrete type inference approach
is to acquire valid combinations of function parameter types. Merely invoking the SMT solver
to solve all constraints is insu�cient, as it only generates a single set of type assignments or
declares unsatis�ability in cases of type errors. To extract all valid type combinations adhering to
the constraints gathered from an input program, we use a simple model enumeration algorithm
described in Algorithm 1.

Algorithm 1: Valid parameter type combination extraction.

Function extractTypes(�, C1, . . . , C=)
Input: �: a set of constraints to satisfy;

C1, . . . , C= : all parameter type variables in the input program.
Output: A set of parameter type combinations satisfying � .

1) ← ∅

2 while True
3 B0C, 0BB86=<4=CB ← solve(C)

4 if ¬B0C

5 break

6 g1, . . . , g= ← values of C1, . . . , C= obtained from 0BB86=<4=CB

7) ←) ∪ {(g1, . . . , g=)}

8 � ← � ∪ {¬(C1 = g1 ∧ . . . ∧ C= = g=)}

9 return T

When the number of valid parameter type combinations is unbounded, the algorithm cannot
terminate. Even with the addition of the �nite type space constraints, the enumeration of a large
number of valid parameter type combinations can still be time-consuming. In practice, we set a
limit on the number of valid combinations that can be discovered, as well as a time limit. Whenever
these limits are exceeded, the algorithm immediately terminates and reports a failure.

4.2.4 Limitations of SMT Solving for Concrete Type Inference. While SMT Solving-based type infer-
ence is capable of generating only type-correct parameter type sets, it is susceptible to producing
an overwhelming number of valid type combinations. It lacks an inherent method to prioritize the

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

249:14 Fangke Ye, Jisheng Zhao, Jun Shirako, and Vivek Sarkar

discovery of type combinations that are more likely to be intended. As a result, when too many
solutions are present, we may have to declare a failure.

4.3 Combining Machine Learning with SMT Solving

In this section, we present our approach to integratingmachine learning and SMT solving in concrete
type inference for code optimization, with the aim of overcoming their respective limitations. We
will �rst present a straightforward approach that encodes the predictions of machine learning
models as constraints. Then, we will move on to an e�ective approach that tackles the limitations
of the �rst one with a progressive relaxation mechanism for machine learning constraints.

4.3.1 Machine Learning Predictions as Constraints. As discussed in Sections 4.1.7 and 4.2.4, machine
learning type inference su�ers from the issue of producing numerous inconsistent parameter type
combinations, while type inference though SMT solving generates a vast number of valid type
combinations, without a clear way to determine the most probable ones. To overcome these
limitations, an intuitive approach is to combine the two methods by taking the intersection of their
respective solution sets.
Consider a program with = parameters, where the type of each parameter C8 is unknown. Let

the machine learning model predict the top-: types for each parameter, denoted by g8,1, . . . , g8,: . To
generate the intersection of the solution sets from two methods, we can add an additional constraint
to the SMT solver:

=∧
8=1

:∨
9=1

C8 = g8, 9

We view this constraint as a conjunction of machine learning constraints, where each constraint
enforces a parameter to be assigned a type from the model’s predictions. Once we include this
constraint in the constraint set, we can use Algorithm 1 to obtain the new solution set. However,
this simple approach contains some major issues:
First, as mentioned in Section 4.1.7, machine learning models may have trouble predicting

consistent combinations of parameter types due to a reduced prediction space or insu�cient
precision. As a result, after intersecting with the solution set of SMT solving type inference, the
outcome could be an empty set.

Second, determining the appropriate value of : can be challenging. A small value of : decreases
the likelihood of generating excessive parameter type combinations, but increases the chances of
excluding the desired type combination. Conversely, a large value of : may result in an exceedingly
large number of type combinations, leading to higher computational costs or even failures.
Furthermore, the best value of : may not be universal for all programs or even all parameters

in the same program. For example, consider a parameter named num_rows. It is apparent that the
parameter type is more likely to have an int type than any other type. A machine learning model
can easily capture this bias and identify int as its top-1 prediction. In this case, a small : would be
bene�cial. However, for a parameter named x, its type could be less apparent to the model, and it
might be necessary to consider more predictions using a larger : .

4.3.2 Progressive Relaxation of Machine Learning Constraints. To address the issues associated
with using machine learning predictions as constraints, we propose a method of relaxing these
constraints progressively. To avoid situations where the machine learning model fails to predict
consistent types and results in an empty solution set, our method allows dropping the machine
learning constraint for certain parameters and relying on the SMT solver to determine the potential
types. Our method also incorporates the ordering of the machine learning model’s predictions for

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

Concrete Type Inference for Code Optimization using Machine Learning with SMT Solving 249:15

each parameter, enabling the prioritization of more probable type candidates during the extraction
of valid parameter type combinations. The details of this method are described below.
First, we choose a list = [:1, . . . , :<] consisting of < values of : (used to represent top-:

predictions), ordered in ascending order. An empirical selection for is [1, 5, 10, 20], which we
employed in our experiments. Let = be the number of function parameters in the input program,
and C1, . . . , C= be the type variables associated with the function parameters in the program. We
also denote the set of top-: predictions for C8 obtained from the machine learning model as %8,: .
Then we can de�ne a scoring function for parameter type combinations as follows:

score(C1, . . . , C=) =
=∑
8=1

<∑
9=1

=<− 9 · 1C8 ∈%8,:9

where 12 is the indicator function that evaluates to 1 when 2 is CAD4 and 0 otherwise.
This scoring function encodes a lexicographical order for parameter type combinations based

on the likelihood of each parameter type predicted by the machine learning model. For example,
suppose = [1, 5]. When comparing two type combinations, we begin by examining how many
top-1 predictions each combination includes. The one with more top-1 predictions will receive a
higher score. If both combinations have the same number of top-1 predictions, we will compare
how many top-5 predictions are included in each. The combination with more top-5 predictions
will get a higher score. If both combinations have the same number of top-1 and top-5 predictions,
they will have the same score.
It is important to note that the scoring function can be expressed as an SMT function using

conditional expressions (ite) and thuswe can enforce aminimum threshold score (B) for all parameter
type combinations in the solution set by adding an SMT constraint as shown below:

=∑
8=1

<∑
9=1

ite
©«
: 9∨
;=1

C8 = g8,; , =
<− 9 , 0

ª®¬
≥ B

where g8,; represents the top-; prediction made by the model for C8 .
By setting the threshold score to 0, we e�ectively disregard all machine learning predictions,

while setting it to
∑<

8=1 =
8 requires all parameters to use the top-1 prediction.

The next step is to determine the threshold score. Initially, it is set as the maximum value that
results in a non-empty solution set. Since the size of the solution set decreases monotonically with
the increase of the threshold, binary search can be employed to quickly �nd the desired value.
Speci�cally, we use Algorithm 2 with B<0G =

∑<
8=1 =

8 .
Once the threshold score has been determined, we enforce it by adding the SMT constraint

discussed above. Then we can utilize Algorithm 1 to generate a consistent and highly probable
set of parameter type combinations. However, it is possible that only a single type combination is
generated. For instance, this situation may arise if the set of top-1 predictions is type-correct. Given
the potential imprecision of machine learning models, it is advisable to generate multiple parameter
type combinations to increase the likelihood of �nding the intended combination. To accomplish
this, we set a minimum number of type combinations to generate. This is achieved by contiguously
decreasing the threshold score until the size of the solution set meets the requirement, or no more
valid solutions can be found. A detailed description of this process is presented in Algorithm 3.

5 EVALUATION

In this section, we present the evaluation results for our concrete type inference methods. First,
we provide our experimental setup. Next, we evaluate the performance of our machine learning
methods on the test set and the benchmarks. Following this, we present the number of solutions

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

249:16 Fangke Ye, Jisheng Zhao, Jun Shirako, and Vivek Sarkar

Algorithm 2: Finding the maximum value of the threshold score.

Function findMaxThresholdScore(�, B<0G , C1, . . . , C=)
Input: �: a set of constraints to satisfy;

B<0G : the maximum threshold score to consider;
C1, . . . , C= : all parameter type variables in the input program.

Output: The maximum value of the threshold score that leads to a non-empty set of parameter
type combinations if � is satis�able and -1 otherwise.

1 ;4 5 C ← 0

2 A86ℎC ← B<0G

3 B ← −1

4 while ;4 5 C ≤ A86ℎC

5 <83 = (;4 5 C + A86ℎC)/2

6 B0C, 0BB86=<4=CB ← solve(� ∪ {score(C1, . . . , C=) ≥ <83})

7 if sat
8 ;4 5 C ←<83 + 1

9 B ←<83

10 else

11 A86ℎC ←<83 − 1

12 return s

Algorithm 3: Extracting the required number of parameter type combinations while
progressively decreasing the threshold score.

Function extractTypesWithThresholdScoreDesc(�,=B>;B , C1, . . . , C=)
Input: �: a set of constraints to satisfy;

=B>;B : the minimum number of solutions required;
C1, . . . , C= : all parameter type variables in the input program.

Output: A set of parameter type combinations.
1 B<0G ←

∑<
8=1 =

8

2) ← ∅

3 while True
4 B ← findMaxThresholdScore(�, B<0G , C1, . . . , C=)

5 if B < 0
6 break

7 * ← extractTypes(� ∪ {score(C1, . . . , C=) ≥ B}, C1, . . . , C=)

8) ←) ∪*

9 if |) | ≥ =B>;B ∨ B = 0
10 break

11 for (g1, . . . , g=) in*

12 � ← � ∪ {¬(C1 = g1 ∧ . . . ∧ C= = g=)}

13 B<0G ← B − 1

14 return T

for SMT type inference problem instances from the benchmarks with di�erent options. Then, we
demonstrate the e�ectiveness of combining machine learning with SMT solving for type inference.
Finally, we perform an end-to-end performance evaluation by integrating our combined type
inference method into the Intrepydd compiler.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

Concrete Type Inference for Code Optimization using Machine Learning with SMT Solving 249:17

5.1 Experimental Setup

Table 3. Benchmark statistics.

Benchmarks #Funcs #Params

bigCLAM 4 9
changepoint 2 3

ipnsw 3 42
ISTA 1 10

PR-Nibble 1 7
sinkhorn_wmd 1 9

cholesky 1 2
jacobi_2d 1 4

lu 1 2
ludcmp 1 5

5.1.1 Benchmarks. The benchmarks used in our exper-
iments consist of 10 Python programs. Six of them,
namely bigCLAM [Romijnders 2017], changepoint [John-
son 2018], ipnsw [Johnson 2019a], ISTA [Johnson 2019b],
PR-Nibble [Johnson 2019b], and sinkhorn_wmd [John-
son 2019c] were used in the Intrepydd paper [Zhou et al.
2020] and represent data analytics workloads. The remain-
ing four programs, cholesky, jacobi_2d, lu, and ludcmp,
were selected from the PolyBench/Python benchmarks
[Abella-González et al. 2021] due to their compatibility
with Intrepydd’s optimizations. All of these benchmarks
came with type annotations. To evaluate our type in-
ference methods in a type-annotation-free setting, we
removed all type annotations from these benchmarks in
the input and used the type annotations as ground truth
labels for evaluation.

Each benchmark program consists of two parts: the main program code in Python and the kernel
code in Intrepydd, i.e., in a Python subset augmented with type annotations. The main program
invokes kernel functions de�ned in the kernel code, which is the target for concrete type inference
and compiler optimizations. The number of functions and the total number of function parameters
in each benchmark kernel are shown in Table 3. Despite their modest size, these programs can
present signi�cant di�culties for type inference. Although the number of functions is small, the
relatively larger number of parameters creates a notable challenge in generating a reasonable
number of versions for code optimization. Smaller programs typically have fewer type constraints,
which can result in a large number of valid solutions produced by SMT-based type inference.
Additionally, the limited context (i.e., source code) available for ML models can negatively impact
the accuracy of their predictions.
Ensuring that the benchmarks are not included in the training data of the machine learning

models is crucial to the validity of the evaluation results. The source code for the type-annotated
benchmarks used in our evaluation has only been stored in access-controlled repositories, and has
never been made available publicly. Although some of the benchmark programs are derived from
publicly accessible code, their original versions do not contain our type annotations. Therefore,
it is highly unlikely that the machine learning models have been exposed to our type-annotated
benchmarks.

5.1.2 The SciPy Dataset. As detailed in Section 4.1.2, we have created a dataset of run-time types
from SciPy’s test suite. The dataset includes 17,665 unique samples, where each sample is a pair
consisting of the source code of a function and its corresponding argument types. However, there
are instances of pairs with identical functions but di�erent run-time argument types. Speci�cally,
the dataset comprises 3,369 unique functions, with each function appearing in at least one sample
and at most 461 samples. Of all the samples, 13,599 contain the Array type while 288 contain the
Dict type. We randomly split the dataset into three parts: a training set containing 90% of the data,
a validation set containing 5%, and a test set containing another 5%.

5.1.3 Machine Learning Models. A summary of the models is included below, including the training
process and the inference methodologies.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

249:18 Fangke Ye, Jisheng Zhao, Jun Shirako, and Vivek Sarkar

Freq. The Freq model is trained by iterating through the training set and keeping track of the
occurrence count for each observed type. During inference, it provides the most frequent : types
as its top-: predictions.

DeepTyper-FS. As shown in Section 4.1.4, the non-decoder part of DeepTyper-FS follows the
same speci�cations as DeepTyper, with an embedding size of 300 and RNNs implemented as gated
recurrent units (GRUs) [Cho et al. 2014] with a hidden state size of 650. The RNN type decoder is a
single-layer GRU with a hidden state size of 128. To train the model, we employed the AdamW
optimizer [Loshchilov and Hutter 2019] with a learning rate of 10−3 and a minibatch size of 32
for a total of 50 epochs. We made a model checkpoint after each epoch and selected the one that
resulted in the lowest validation loss for subsequent evaluations. To obtain its top-: predictions
during inference, we utilized beam search with a beam size of 64.

CodeT5-FT. As detailed in Section 4.1.5, we based our CodeT5-FT model on the pre-trained
CodeT5-large model with 770M parameters [Le et al. 2022]. We added a randomly initialized RNN
type decoder that is identical to the one used in DeepTyper-FS to its Transformer encoder. The
entire model was trained on our training set using the AdamW optimizer with a learning rate of
5 × 10−5 and a minibatch size of 16 for 10 epochs. We followed the same checkpoint selection and
top-: inference procedure as in DeepTyper-FS.

GPT-4. There is no training involved in our zero-shot prompt-based method. We generated
prompts using the template shown in Fig. 6a and fed them into GPT-4’s API to obtain responses.
The sampling temperature was set to 1. To ensure that our benchmarks were not part of the training
data of the evaluated model, we consistently used the gpt-4-0314 model, which is the initial public
version of GPT-4 released on March 14, 2023.

Addressing Randomness in Evaluation. Given the stochastic nature of deep learningmodel training,
we trained DeepTyper-FS and CodeT5-FT three times with di�erent random seeds. As for GPT-4,
since its output is randomly sampled each time, we let it make three rounds of type inference for
all benchmarks. We report the results from all runs when evaluating the accuracy of prediction.
We then chose one trained model each for DeepTyper-FS and CodeT5-FT, as well as the predictions
from one round for GPT-4, to be used in all subsequent evaluations. The selection criteria are
discussed later in Section 5.2.2.

5.1.4 SMT Solver and Resource Budgets. In our experiments, we used cvc5 [Barbosa et al. 2022] as
the SMT solver. The enumeration of solutions in our SMT-based methods can be time-consuming,
particularly when the number of solutions is large. For practical purposes, we imposed a timeout
of 5 minutes and a maximum threshold of 1,000 solutions to be discovered. Additionally, when
evaluating the constraint relaxation method proposed in Section 4.3.2, we set the minimum solution
count threshold to 10.

5.1.5 Hardware Platform. We conducted all our experiments, except for the training of machine
learning models, on a desktop machine running Ubuntu 20.04.5. It is equipped with an Intel Core
i5-7600 CPU (@3.5GHz) and 64GB of RAM. There is no discrete GPU on this platform and all local
model inference was performed using the CPU. For training DeepTyper-FS and CodeT5-FT, we
used one NVIDIA Quadro RTX 6000 GPU on a separate machine.

5.2 Evaluation of Machine Learning Type Inference

We assessed our machine learning based type inference models by evaluating them on both accuracy
and consistency. Our evaluations were conducted on the test subset of the SciPy dataset and the
benchmarks.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

Concrete Type Inference for Code Optimization using Machine Learning with SMT Solving 249:19

Freq DeepTyper-FS CodeT5-FT
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

30
.8

79
.5

96
.9 99

.6

72
.5

96
.9 99

.7
10

0.0

72
.2

96
.5 99

.4
99

.9

Top-1 Top-5 Top-10 Top-20

(a) All types.

Freq DeepTyper-FS CodeT5-FT
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

50
.7

10
0.0

10
0.0

10
0.0

84
.6

98
.7 10

0.0
10

0.0

85
.5

98
.2 99

.7
99

.9

Top-1 Top-5 Top-10 Top-20

(b) Scalar types.

Freq DeepTyper-FS CodeT5-FT
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

0.0

47
.8

92
.2 99

.1

53
.6

94
.1 99

.4
10

0.0

51
.6

93
.8 98

.9 10
0.0

Top-1 Top-5 Top-10 Top-20

(c) Non-scalar types.

Fig. 8. Accuracy on the test subset of the SciPy dataset (%). For DeepTyper-FS and CodeT5-FT, the bar height
is the average accuracy of 3 models trained with di�erent random seeds, with range bars showing min/max
values.

Freq DeepTyper-FS CodeT5-FT GPT-4
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

24
.7

54
.8

91
.4 97

.8

34
.4

68
.5

87
.8 97

.1

48
.4

83
.5 89

.6
97

.8

73
.1

85
.7

93
.5 99

.3

Top-1 Top-5 Top-10 Top-20

(a) All types.

Freq DeepTyper-FS CodeT5-FT GPT-4
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

82
.1

10
0.0

10
0.0

10
0.0

67
.9

94
.0

97
.6

10
0.0

71
.4

92
.9

97
.6

98
.8

97
.6

10
0.0

10
0.0

10
0.0

Top-1 Top-5 Top-10 Top-20

(b) Scalar types.

Freq DeepTyper-FS CodeT5-FT GPT-4
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

0.0

35
.4

87
.7

96
.9

20
.0

57
.4

83
.6

95
.9

38
.5

79
.5 86

.2
97

.4

62
.6

79
.5

90
.8 99

.0

Top-1 Top-5 Top-10 Top-20

(c) Non-scalar types.

Fig. 9. Accuracy on the benchmarks (%). For DeepTyper-FS and CodeT5-FT, the bar height is the average
accuracy of 3models trainedwith di�erent random seeds. For GPT-4, the bar height is the average accuracy of 3
rounds for predictions for all benchmarks. The range bars show min/max values from di�erent models/rounds.

5.2.1 Prediction Accuracy. We �rst evaluated the machine learning models by their accuracy in
predicting types for each function parameter. Fig. 8 shows the top-: accuracy of the models on
the test subset of the SciPy dataset. We did not evaluate the performance of GPT-4 on the test set
because it was not trained on the corresponding training set and we did not have access to its API
for enabling large-scale evaluation. The �gure indicates that the Freq model serves as a reasonably
performing baseline, having a top-10 accuracy of over 90%. This suggests that the dataset’s types
are concentrated within the few most commonly occurring types. Both the DeepTyper-FS and
CodeT5-FT models, which employ deep learning techniques, were able to surpass the baseline by a
signi�cant margin, particularly for non-scalar types, which are relatively infrequent in the dataset.
However, no signi�cant performance di�erence was observed between these two models on the
test set.
The accuracy of all four machine learning models on the ten benchmarks is depicted in Fig. 9.

Although DeepTyper-FS and CodeT5-FT performed similarly on the test set, CodeT5-FT exhibited
better performance than DeepTyper-FS on the benchmarks. This observation suggests that CodeT5-
FT may generalize better to the benchmark programs, which di�er from the Python programs in
the SciPy dataset. Remarkably, GPT-4 demonstrated outstanding zero-shot generalization ability
on the benchmarks, surpassing all other models without any training on our dataset.

5.2.2 Prediction Consistency. Starting from this evaluation, we used one model checkpoint for
DeepTyper-FS and CodeT5-FT, as well as the predictions from one round of type inference for

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

249:20 Fangke Ye, Jisheng Zhao, Jun Shirako, and Vivek Sarkar

Table 4. Number of possible and type-correct parameter type combinations produced by machine learning
models. The table displays the number of potential parameter type combinations generated by machine
learning models (ML), alongside the number of type-correct combinations produced by these models (ML+TC).

Benchmark Category
Freq DeepTyper-FS

Top-1 Top-5 Top-10 Top-20 Top-1 Top-5 Top-10 Top-20

bigCLAM
ML 512 3.9 × 108 3.2 × 1011 1.3 × 1014 512 8.1 × 108 4.6 × 1011 1.4 × 1014

ML + TC 0 1 3 3 0 0 8 8

changepoint
ML 8 729 6859 5.1 × 104 8 900 6498 5.5 × 104

ML + TC 0 0 0 0 0 0 0 0

ipnsw
ML 4.4 × 1012 1.2 × 1040 5.1 × 1053 7.3 × 1065 2.2 × 1012 1.2 × 1041 3.2 × 1053 3.1 × 1065

ML + TC 0 0 > 1000 > 1000 0 0 0 > 1000

ISTA
ML 1024 3.5 × 109 6.1 × 1012 4.8 × 1015 1024 6.6 × 109 6.1 × 1012 4.6 × 1015

ML + TC 0 0 88 88 0 0 0 > 1000

PR-Nibble
ML 128 4.8 × 106 8.9 × 108 9.5 × 1010 128 7.2 × 106 9.4 × 108 1.1 × 1011

ML + TC 0 0 980 > 1000 0 0 > 1000 > 1000

sinkhorn_wmd
ML 512 3.9 × 108 3.2 × 1011 1.3 × 1014 512 9.0 × 108 4.4 × 1011 1.3 × 1014

ML + TC 0 0 556 556 0 0 > 1000 > 1000

cholesky
ML 4 81 361 1369 4 90 361 1443

ML + TC 0 2 2 2 2 2 2 2

jacobi_2d
ML 16 6561 1.3 × 105 1.9 × 106 16 8100 1.4 × 105 2.0 × 106

ML + TC 0 8 8 8 8 12 12 12

lu
ML 4 81 361 1369 4 90 342 1443

ML + TC 0 2 2 2 2 2 2 2

ludcmp
ML 32 5.9 × 104 2.5 × 106 6.9 × 107 32 9.0 × 104 2.5 × 106 6.6 × 107

ML + TC 0 1 13 31 2 4 8 30

Benchmark Category
CodeT5-FT GPT-4

Top-1 Top-5 Top-10 Top-20 Top-1 Top-5 Top-10 Top-20

bigCLAM
ML 512 9.0 × 108 4.6 × 1011 1.9 × 1014 512 8.1 × 108 3.2 × 1011 1.9 × 1014

ML + TC 0 8 8 8 0 0 10 10

changepoint
ML 8 900 6859 5.2 × 104 8 1000 6859 5.5 × 104

ML + TC 0 0 0 0 0 0 0 0

ipnsw
ML 4.4 × 1012 4.8 × 1041 1.5 × 1054 6.4 × 1065 4.4 × 1012 1.2 × 1040 4.8 × 1051 2.1 × 1064

ML + TC 0 0 0 > 1000 0 > 1000 > 1000 > 1000

ISTA
ML 1024 4.8 × 109 5.2 × 1012 4.9 × 1015 1024 5.9 × 109 2.7 × 1012 2.1 × 1015

ML + TC 0 0 > 1000 > 1000 0 > 1000 > 1000 > 1000

PR-Nibble
ML 128 7.3 × 106 9.9 × 108 1.2 × 1011 128 4.8 × 106 4.9 × 108 5.3 × 1010

ML + TC 0 0 0 > 1000 64 > 1000 > 1000 > 1000

sinkhorn_wmd
ML 512 8.1 × 108 3.5 × 1011 1.5 × 1014 512 3.9 × 108 1.2 × 1011 6.1 × 1013

ML + TC 0 1000 > 1000 > 1000 0 240 320 640

cholesky
ML 4 90 360 1480 4 90 340 1156

ML + TC 2 2 2 2 2 2 2 2

jacobi_2d
ML 16 8100 1.4 × 105 2.0 × 106 16 6561 8.4 × 104 1.3 × 106

ML + TC 8 12 12 12 8 12 12 12

lu
ML 4 90 380 1404 4 81 289 1156

ML + TC 2 2 2 2 2 2 2 2

ludcmp
ML 32 9.0 × 104 3.0 × 106 7.5 × 107 32 5.9 × 104 1.4 × 106 4.5 × 107

ML + TC 2 8 24 45 2 20 45 45

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

Concrete Type Inference for Code Optimization using Machine Learning with SMT Solving 249:21

GPT-4. To avoid bias, we selected the model checkpoints based on the best top-1 accuracy on the
test set instead of the benchmarks. For GPT-4, however, we didn’t know its accuracy on the test set.
We chose the round that produced the lowest top-1 accuracy on the benchmarks since GPT-4 was
likely to be the top-performing model in all experiments.
Table 4 shows the number of function parameter type combinations implied by the machine

learning models’ predictions (ML rows), and how many of these combinations are consistent, i.e.,
type-correct (ML+TC rows). The former data is analytically calculated from the predictions, while
the latter is obtained using Algorithm 1 with the type-correctness constraints de�ned in Section 4.2
and machine learning constraints generated as in Section 4.3.1.
The ML rows demonstrate that with an increase in the number of predictions taken into con-

sideration, the quantity of potential type combinations expands exponentially. However, only a
small proportion of these combinations are consistent in many cases. Using only a few predictions
per parameter could result in the absence of valid type combinations. On the other hand, if more
predictions are considered, there could be a much larger number of invalid combinations that
need to be �ltered out, which can be prohibitively expensive. Even if after �ltering out all invalid
combinations, the resulting solutions might still be excessively numerous.

By comparing the ML+TC rows across models, we can observe that more accurate models tend
to yield more consistent predictions. For example, GPT-4 was able to produce valid combinations
for PR-Nibble using only top-1 predictions, whereas the other three models were unable to do so
even with top-5 predictions.

5.3 Evaluation of SMT Solving Type Inference

We evaluated the e�cacy of SMT solving for type inference by executing Algorithm 1 with type-
correctness constraints (TC), �nite type space constraints (FTC), and uniform bit width constraints
(UBW), as de�ned in Section 4.2. We counted the resulting number of parameter type combinations
and versions of functions. A function version is a unique pair of a function and associated parameter
types. The results are shown in Table 5.

Table 5. Number of parameter type combinations and versions of functions produced by SMT-based type
inference. TC = Type-Correctness, FTS = Finite Type Space, UBW = Uniform Bit Width.

Benchmark
TC TC + FTS TC + FTS + UBW

#Combinations #Functions #Combinations #Functions #Combinations #Functions

bigCLAM 10 21 10 21 3 10
changepoint >1000 - 186 310 186 310

ipnsw >1000 - >1000 - >1000 -
ISTA >1000 - >1000 - 54 54

PR-Nibble >1000 - >1000 - >1000 -
sinkhorn_wmd >1000 - >1000 - 243 243

cholesky >1000 - 2 2 2 2
jacobi_2d >1000 - 12 12 8 8

lu >1000 - 2 2 2 2
ludcmp 90 90 45 45 27 27

As shown in the table, using only type-correctness constraints led to an excessive number of
solutions (i.e., function parameter combinations) for most of the benchmarks. The addition of �nite
type space constraints and uniform bit width constraints helped to signi�cantly reduce the number
of solutions for many benchmarks. Nonetheless, a few benchmarks still produced a large number
of solutions even with these additional constraints.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

249:22 Fangke Ye, Jisheng Zhao, Jun Shirako, and Vivek Sarkar

For multi-function benchmarks bigCLAM and changepoint, the number of function versions is
less than the product of solution count and function count. This is because some function versions
are shared between solutions.

5.4 Evaluation of the Combination of Machine Learning and SMT Solving

Table 6. Number of parameter type combinations produced by adding machine learning predictions as
constraints to SMT solving type inference and applying Algorithm 1. The numbers in bold and green indicate
matches with the ground truth.

Benchmark
Freq DeepTyper-FS CodeT5-FT GPT-4

Top-1 Top-5 Top-10 Top-20 Top-1 Top-5 Top-10 Top-20 Top-1 Top-5 Top-10 Top-20 Top-1 Top-5 Top-10 Top-20

bigCLAM 0 1 2 2 0 0 2 2 0 2 2 2 0 0 3 3

changepoint 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ipnsw 0 0 > 1000 > 1000 0 0 0 > 1000 0 0 0 > 1000 0 126 > 1000 > 1000

ISTA 0 0 30 30 0 0 0 36 0 0 24 45 0 18 54 54

PR-Nibble 0 0 378 > 1000 0 0 264 > 1000 0 0 0 810 2 486 828 > 1000

sinkhorn_wmd 0 0 147 147 0 0 126 243 0 75 108 243 0 18 24 48

cholesky 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

jacobi_2d 0 8 8 8 4 8 8 8 4 8 8 8 4 8 8 8

lu 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

ludcmp 0 1 8 18 1 2 4 18 1 4 12 27 1 12 27 27

Table 6 displays the number of solutions acquired by intersecting solution sets obtained through
machine learning and SMT solving, as described in Section 4.3.1. The results indicate that this
method yields a smaller solution set compared to pure machine learning or SMT solving approaches,
as evidenced by the comparison to numbers in Table 4 and Table 5. However, we have also observed
its drawbacks discussed in Section 4.3.1. Notably, there were no valid solutions for changepoint,
suggesting that the intersection may yield an empty solution set in certain cases. Moreover, for
all four machine learning models, even though using the top-20 predictions yielded the desired
parameter type combinations for more benchmarks than using the top-10, it also generated many
more solutions for some other benchmarks. This suggests that there is no single optimal number of
predictions to use for all benchmarks.

Table 7. Number of parameter type combinations and versions of functions produced by Algorithm 3. The
numbers in bold and green indicate matches with the ground truth. “–” denotes timeout during compilation.

Benchmark
Freq DeepTyper-FS CodeT5-FT GPT-4

#Combinations #Functions #Combinations #Functions #Combinations #Functions #Combinations #Functions

bigCLAM 3 10 3 10 3 10 3 10
changepoint 186 310 186 310 186 310 186 310

ipnsw 131 263 - - - - 12 28
ISTA 14 14 10 10 10 10 10 10

PR-Nibble 14 14 16 16 10 10 24 24
sinkhorn_wmd 11 11 11 11 11 11 19 19

cholesky 2 2 2 2 2 2 2 2
jacobi_2d 8 8 8 8 8 8 8 8

lu 2 2 2 2 2 2 2 2
ludcmp 10 10 10 10 12 12 12 12

Our improved algorithm, which incorporates progressive relaxation of machine learning con-
straints as described in Section 4.3.2, has successfully addressed these issues, as illustrated in Table 7.
The machine learning models, when combined with SMT solving, have generated a limited number
of parameter type combinations that cover most of the ground truth types. This implies that they
have achieved high precision without in�ating the output.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

Concrete Type Inference for Code Optimization using Machine Learning with SMT Solving 249:23

5.5 Performance Benchmarking with Compiler Integration

In order to showcase the e�ectiveness of our concrete type inference technique in enhancing
the performance of untyped programs through ahead-of-time compilation, we incorporated the
concrete types generated by our approach with a multi-versioning code generator based on the
Intrepydd compiler [Zhou et al. 2020]. The code generator takes in code written in the supported
subset of Python and emits type-annotated Python code and C++ code, which can be compiled by
a Numba-AOT back-end, based on the ahead-of-time compilation module of Numba [Lam et al.
2015], and a C++ back-end, based on a C++ compiler, respectively. We assessed the performance
gains achieved by the compiled versions relative to the original untyped versions. Note that the
back-ends also generate unoptimized Python code as a fallback option in case the run-time types
do not match with any of the provided types.

Table 8. Average kernel execution time (in seconds) and standard deviation of 6 runs (in parentheses) as a
percentage of average execution time, compiled using di�erent back-ends. The numbers in bold and green

indicate that one of the inferred parameter type combinations matches with the ground truth.

Benchmark Python
Numba-AOT Back-end C++ Back-end

Ground Truth GPT-4 Ground Truth GPT-4

bigCLAM 4.487 (1.89%) 0.221 (0.70%) 0.221 (0.72%) 0.460 (1.35%) 0.460 (1.95%)

changepoint 18.270 (3.04%) 1.078 (0.22%) 1.076 (0.31%) 1.129 (0.12%) 1.168 (0.25%)

ipnsw 66.117 (3.35%) 0.634 (0.65%) 65.242 (0.30%) 1.784 (0.48%) 64.881 (1.17%)
ISTA 14.756 (0.23%) 42.751 (0.71%) 42.452 (0.81%) 11.945 (0.30%) 11.768 (0.43%)

PR-Nibble 15.128 (2.23%) 0.067 (0.33%) 0.071 (0.24%) 0.003 (1.03%) 0.003 (0.52%)

sinkhorn_wmd 29.079 (0.20%) 41.789 (0.45%) 41.628 (0.32%) 0.812 (0.41%) 0.835 (1.40%)

cholesky 84.296 (0.64%) 0.227 (0.22%) 0.227 (0.16%) 0.224 (0.22%) 0.225 (0.25%)

jacobi_2d 297.841 (0.40%) 0.817 (0.37%) 0.816 (0.43%) 0.322 (1.61%) 0.324 (1.67%)

lu 221.153 (0.97%) 0.696 (2.82%) 0.689 (4.06%) 0.676 (2.23%) 0.631 (1.63%)

ludcmp 142.048 (2.14%) 0.785 (1.44%) 0.666 (3.01%) 0.608 (1.74%) 0.601 (2.69%)

We present the execution times of the kernels (i.e., the part subject to AOT optimization) in
the benchmarks compiled using the hybrid type inference technique discussed in Section 4.3.2
with the GPT-4 model, as shown in Table 8. Our type inference method successfully inferred the
true types for nine out of the ten benchmarks, resulting in signi�cant performance improvements
after compilation using the two optimizing back-ends. However, it failed to identify the true types
for the ipnsw benchmark, which includes a number of Dict(int32,int32) and Array(int32,1)

types in its parameters. These two types can be assigned to function parameters in this benchmark
interchangeably without breaking type correctness, leading to numerous valid type combinations.
Moreover, the similar behavior exhibited by variables of these two types seemed to confuse the
machine learning model, causing inaccurate predictions. As a result, our hybrid type inference
method was unable to infer the intended types for this benchmark.

In Table 9, we demonstrate the performance improvements achieved by our hybrid type inference
method using di�erent machine learning models, in comparison to unoptimized Python code. It
can be seen that the accuracy of the machine learning model signi�cantly in�uences the ultimate
code performance. A more accurate model led to a higher geometric mean of speedup across all
benchmarks. Utilizing the most precise model, GPT-4, we attained a geometric mean speedup of
62.2× and an impressive > 4, 400× speedup for PR-Nibble using the C++ back-end, whereas other
models yielded no speedup for this benchmark due to their inability to deduce the intended types.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

249:24 Fangke Ye, Jisheng Zhao, Jun Shirako, and Vivek Sarkar

Table 9. Speedup of benchmarks achieved by compiling to Numba-AOT and C++ back-ends relative to
the Python version. The numbers in bold and green indicate that one of the inferred parameter type
combinations matches with the ground truth. The cells containing 1.0* indicate experiments that timed out
during compilation. Although not implemented, the compiler can theoretically produce the Python version in
such cases, leading to a speedup of 1.0.

Benchmarks
Freq DeepTyper-FS CodeT5-FT GPT-4

Numba-AOT C++ Numba-AOT C++ Numba-AOT C++ Numba-AOT C++

bigCLAM 20.4 9.8 20.2 9.7 20.2 9.8 20.3 9.7

changepoint 16.9 15.6 16.6 15.7 16.9 15.8 17.0 15.6

ipnsw 1.0 1.0 1.0* 1.0* 1.0* 1.0* 1.0 1.0
ISTA 1.0 1.0 0.3 1.2 0.3 1.2 0.3 1.3

PR-Nibble 1.0 1.0 1.0 1.0 1.0 1.0 212.4 4485.3

sinkhorn_wmd 1.0 1.0 1.0 1.0 1.0 1.0 0.7 34.8

cholesky 365.2 376.9 371.1 369.7 371.9 376.4 371.1 375.5

jacobi_2d 364.7 922.4 364.5 939.5 364.5 933.1 364.9 920.3

lu 298.2 345.4 299.9 335.3 319.1 345.8 321.2 350.6

ludcmp 210.8 233.6 215.3 234.3 212.6 235.3 213.3 236.5

Geometric Mean 17.6 18.3 15.9 18.7 16 18.8 26.4 62.2

Furthermore, it becomes clear that type inference generally bene�ts both back-ends, as it enables
their optimizations. Note that the slowdown for ISTA and sinkhorn_wmd when using Numba-
AOT is attributed to the presence of sparse matrices in these benchmarks, which are not natively
supported by Numba. Although we attempted to implement some support for these matrices by
developing auxiliary Numba functions for use in the benchmarks, the resulting performance was
still suboptimal.

6 RELATED WORK

Static type inference [Milner 1978] is a well-established technique that can enable compilers
to determine types for a variety of program elements. However, due to the dynamic nature of
programming languages like Python, static type inference often lacks precision. Various static type
inference tools exist for Python, such as mypy,4 Pyre,5 PySonar2,6 and pytype.7 While these tools
perform adequately in simple cases, they struggle with more intricate scenarios due to Python’s
dynamic characteristics, necessitating additional type annotations. To address some of the complex
cases, Typpete [Hassan et al. 2018] employs an SMT solver to infer one consistent set of types
for an entire program in a supported subset of Python. Di�erent from Typpete, our SMT-based
type inference operates on partial programs and generates multiple concrete type sets instead of a
single type set potentially comprising abstract types.

In recent years, a large body of work has focused on utilizing deep learning for type inference. This
includes studies that employ recurrent neural networks for predicting types from code [Hellendoorn
et al. 2018; Malik et al. 2019; Mir et al. 2022], graph neural networks [Allamanis et al. 2020; Wei
et al. 2020; Ye et al. 2021], and pre-trained transformers [Huang et al. 2023; Jesse et al. 2021;
Wei et al. 2023]. Since machine learning models generate types without guaranteed correctness

4https://mypy-lang.org/
5https://pyre-check.org/
6https://github.com/yinwang0/pysonar2
7https://github.com/google/pytype

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

https://mypy-lang.org/
https://pyre-check.org/
https://github.com/yinwang0/pysonar2
https://github.com/google/pytype

Concrete Type Inference for Code Optimization using Machine Learning with SMT Solving 249:25

and can yield inconsistencies, several strategies have been proposed to integrate them with rule-
based methods. These approaches encompass combining logical and natural constraints through
continuous relaxation [Pandi et al. 2020], employing a type checker to validate predicted types
[Pradel et al. 2020], and utilizing models to o�er type suggestions during the rule-based static type
inference process [Peng et al. 2022]. Nonetheless, no previous methods have combined machine
learning with SMT solving, as presented in this paper.

E�orts have been made to compile programs written in Python and languages with similar syntax
and semantics. Just-in-time compilers like Numba [Lam et al. 2015] and JAX [Bradbury et al. 2018]
dynamically generate high-performance code from Python using type information collected during
run-time. Intrepydd [Zhou et al. 2020] and Mojo8 compile portions of type-annotated code ahead of
time, which other parts of the program can invoke during run-time to enhance performance. Codon
[Shajii et al. 2023] introduces a framework for creating statically-typed, Pythonic domain-speci�c
languages, facilitating the writing of Python-like programs that can be compiled ahead of time.
Unlike the past work, our method enables ahead-of-time compilation without requiring any type
annotations or statically-typed code, and also without requiring a whole program.

7 CONCLUSION

In this paper, we introduced a new approach to concrete type inference and demonstrated its
e�ectiveness in enabling code optimization for dynamically typed languages, without requiring
the programmer to provide any type information. We explored three kinds of type inference
algorithms in our approach based on: 1) machine learning models including GPT-4, 2) constraint-
based inference based on SMT solving, and 3) a combination of 1) and 2). Our approach used the
output from type inference to generate multi-version code for a bounded number of concrete type
options, while also including a catch-all untyped version for the case when no match is found.
Experimental results showed that the combined algorithm in 3) delivers far superior precision and
performance than the separate algorithms for 1) and 2). The performance improvement due to
type inference, in terms of geometric mean speedup across all benchmarks compared to standard
Python, when using 3) is 26.4× with Numba as an AOT optimizing back-end and 62.2× with the
Intrepydd optimizing compiler as a back-end. These vast performance improvements can have a
signi�cant impact on programmers’ productivity, while also reducing their applications’ use of
compute and energy resources.

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis,
Je�rey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geo�rey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https:
//www.tensor�ow.org/ Software available from tensor�ow.org.

Miguel Á. Abella-González, Pedro Carollo-Fernández, Louis-Noël Pouchet, Fabrice Rastello, and Gabriel Rodríguez. 2021.
PolyBench/Python: Benchmarking Python Environments with Polyhedral Optimizations. In Proceedings of the 30th
ACM SIGPLAN International Conference on Compiler Construction (Virtual, Republic of Korea) (CC 2021). Association for
Computing Machinery, New York, NY, USA, 59–70. https://doi.org/10.1145/3446804.3446842

Ole Agesen. 1995. The Cartesian Product Algorithm. In ECOOP’95 — Object-Oriented Programming, 9th European Conference,
Åarhus, Denmark, August 7–11, 1995, Mario Tokoro and Remo Pareschi (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 2–26.

Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. 2018. A Survey of Machine Learning for Big
Code and Naturalness. ACM Comput. Surv. 51, 4, Article 81 (jul 2018), 37 pages. https://doi.org/10.1145/3212695

8https://www.modular.com/mojo

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1145/3446804.3446842
https://doi.org/10.1145/3212695
https://www.modular.com/mojo

249:26 Fangke Ye, Jisheng Zhao, Jun Shirako, and Vivek Sarkar

Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, and Zheng Gao. 2020. Typilus: Neural Type Hints. In Proceedings of
the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK) (PLDI 2020).
Association for Computing Machinery, New York, NY, USA, 91–105. https://doi.org/10.1145/3385412.3385997

Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,
Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,
Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms
for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
I (Lecture Notes in Computer Science, Vol. 13243), Dana Fisman and Grigore Rosu (Eds.). Springer, 415–442. https:
//doi.org/10.1007/978-3-030-99524-9_24

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2017. The SMT-LIB Standard: Version 2.6. Technical Report. Department of
Computer Science, The University of Iowa. Available at www.SMT-LIB.org.

Clark Barrett and Cesare Tinelli. 2018. Satis�ability modulo theories. Springer.
James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula,

Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. http://github.com/google/jax

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Je�reyWu, ClemensWinter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language Models are Few-Shot Learners. CoRR abs/2005.14165 (2020). arXiv:2005.14165
https://arxiv.org/abs/2005.14165

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014. On the Properties of Neural Machine
Translation: Encoder-Decoder Approaches. arXiv:1409.1259 [cs.CL]

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham,
Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua
Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm
Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam
Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan
Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Je� Dean, Slav Petrov,
and Noah Fiedel. 2022. PaLM: Scaling Language Modeling with Pathways. arXiv:2204.02311 [cs.CL]

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An e�cient SMT solver. In Tools and Algorithms for the Construction and
Analysis of Systems: 14th International Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings 14. Springer, 337–340.

Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller. 2018. MaxSMT-Based Type Inference for Python 3. In
Computer Aided Veri�cation, Hana Chockler and Georg Weissenbacher (Eds.). Springer International Publishing, Cham,
12–19.

Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis. 2018. Deep Learning Type Inference. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association for Computing Machinery,
New York, NY, USA, 152–162. https://doi.org/10.1145/3236024.3236051

Qing Huang, Zhiqiang Yuan, Zhenchang Xing, Xiwei Xu, Liming Zhu, and Qinghua Lu. 2023. Prompt-Tuned Code Language
Model as a Neural Knowledge Base for Type Inference in Statically-Typed Partial Code. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering (Rochester, MI, USA) (ASE ’22). Association for
Computing Machinery, New York, NY, USA, Article 79, 13 pages. https://doi.org/10.1145/3551349.3556912

Kevin Jesse, Premkumar T. Devanbu, and Tou�que Ahmed. 2021. Learning Type Annotation: Is Big Data Enough?. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Athens, Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY, USA,
1483–1486. https://doi.org/10.1145/3468264.3473135

Ben Johnson. 2018. graph-changepoint. https://github.com/bkj/graph-changepoint.
Ben Johnson. 2019a. IP-NSW. https://github.com/prog-eval/prog-eval/tree/master/ipnsw.
Ben Johnson. 2019b. lgc (local graph clustering). https://github.com/prog-eval/prog-eval/tree/master/lgc.
Ben Johnson. 2019c. Sinkhorn Word Movers Distance (sinkhorn_wmd). https://github.com/prog-eval/prog-eval/tree/master/

sinkhorn_wmd.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

https://doi.org/10.1145/3385412.3385997
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
http://github.com/google/jax
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1409.1259
https://arxiv.org/abs/2204.02311
https://doi.org/10.1145/3236024.3236051
https://doi.org/10.1145/3551349.3556912
https://doi.org/10.1145/3468264.3473135
https://github.com/bkj/graph-changepoint
https://github.com/prog-eval/prog-eval/tree/master/ipnsw
https://github.com/prog-eval/prog-eval/tree/master/lgc
https://github.com/prog-eval/prog-eval/tree/master/sinkhorn_wmd
https://github.com/prog-eval/prog-eval/tree/master/sinkhorn_wmd

Concrete Type Inference for Code Optimization using Machine Learning with SMT Solving 249:27

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: A LLVM-Based Python JIT Compiler. In Proceedings of
the Second Workshop on the LLVM Compiler Infrastructure in HPC (Austin, Texas) (LLVM ’15). Association for Computing
Machinery, New York, NY, USA, Article 7, 6 pages. https://doi.org/10.1145/2833157.2833162

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven C. H. Hoi. 2022. CodeRL: Mastering Code
Generation through Pretrained Models and Deep Reinforcement Learning. arXiv:2207.01780 [cs.LG]

Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization. arXiv:1711.05101 [cs.LG]
Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. 2019. NL2Type: Inferring JavaScript Function Types from Natural

Language Information. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). 304–315. https:
//doi.org/10.1109/ICSE.2019.00045

Wes McKinney et al. 2010. Data structures for statistical computing in python. In Proceedings of the 9th Python in Science
Conference, Vol. 445. Austin, TX, 51–56.

Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. System Sci. 17, 3 (1978), 348–375.
https://doi.org/10.1016/0022-0000(78)90014-4

Amir M. Mir, Evaldas Latoskinas, and Georgios Gousios. 2021. ManyTypes4Py: A Benchmark Python Dataset for Machine
Learning-based Type Inference. CoRR abs/2104.04706 (2021). arXiv:2104.04706 https://arxiv.org/abs/2104.04706

Amir M. Mir, Evaldas Latoškinas, Sebastian Proksch, and Georgios Gousios. 2022. Type4Py: Practical Deep Similarity
Learning-Based Type Inference for Python. In Proceedings of the 44th International Conference on Software Engineering
(Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing Machinery, New York, NY, USA, 2241–2252. https:
//doi.org/10.1145/3510003.3510124

OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
Irene Vlassi Pandi, Earl T. Barr, Andrew D. Gordon, and Charles Sutton. 2020. OptTyper: Probabilistic Type Inference by

Optimising Logical and Natural Constraints. https://doi.org/10.48550/ARXIV.2004.00348
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,

Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. arXiv:1912.01703 [cs.LG]

Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael Lyu. 2022. Static Inference Meets
Deep Learning: A Hybrid Type Inference Approach for Python. In Proceedings of the 44th International Conference on
Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing Machinery, New York, NY, USA,
2019–2030. https://doi.org/10.1145/3510003.3510038

John Plevyak and Andrew A. Chien. 1994. Precise Concrete Type Inference for Object-Oriented Languages. In Proceedings of
the Ninth Annual Conference on Object-Oriented Programming Systems, Language, and Applications (Portland, Oregon, USA)
(OOPSLA ’94). Association for ComputingMachinery, NewYork, NY, USA, 324–340. https://doi.org/10.1145/191080.191130

Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. 2020. TypeWriter: Neural Type Prediction with Search-
Based Validation. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for Computing
Machinery, New York, NY, USA, 209–220. https://doi.org/10.1145/3368089.3409715

Alec Radford, Je�rey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019. Language Models are
Unsupervised Multitask Learners. OpenAI blog 1, 8 (2019), 9.

Veselin Raychev, Pavol Bielik, and Martin Vechev. 2016. Probabilistic Model for Code with Decision Trees. SIGPLAN Not. 51,
10 (oct 2016), 731–747. https://doi.org/10.1145/3022671.2984041

Rob Romijnders. 2017. RobRomijnders/bigclam: Implements the bigCLAM algorithm. https://github.com/RobRomijnders/
bigclam.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine Translation of Rare Words with Subword
Units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Berlin, Germany, 1715–1725. https://doi.org/10.18653/v1/P16-1162

Ariya Shajii, Gabriel Ramirez, Haris Smajlović, Jessica Ray, Bonnie Berger, Saman Amarasinghe, and Ibrahim Numanagić.
2023. Codon: A Compiler for High-Performance Pythonic Applications and DSLs. In Proceedings of the 32nd ACM
SIGPLAN International Conference on Compiler Construction (Montréal, QC, Canada) (CC 2023). Association for Computing
Machinery, New York, NY, USA, 191–202. https://doi.org/10.1145/3578360.3580275

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,
Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod
Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R.
Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors.
2020. SciPy 1.0: Fundamental Algorithms for Scienti�c Computing in Python. Nature Methods 17 (2020), 261–272.
https://doi.org/10.1038/s41592-019-0686-2

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

https://doi.org/10.1145/2833157.2833162
https://arxiv.org/abs/2207.01780
https://arxiv.org/abs/1711.05101
https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1016/0022-0000(78)90014-4
https://arxiv.org/abs/2104.04706
https://arxiv.org/abs/2104.04706
https://doi.org/10.1145/3510003.3510124
https://doi.org/10.1145/3510003.3510124
https://arxiv.org/abs/2303.08774
https://doi.org/10.48550/ARXIV.2004.00348
https://arxiv.org/abs/1912.01703
https://doi.org/10.1145/3510003.3510038
https://doi.org/10.1145/191080.191130
https://doi.org/10.1145/3368089.3409715
https://doi.org/10.1145/3022671.2984041
https://github.com/RobRomijnders/bigclam
https://github.com/RobRomijnders/bigclam
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1145/3578360.3580275
https://doi.org/10.1038/s41592-019-0686-2

249:28 Fangke Ye, Jisheng Zhao, Jun Shirako, and Vivek Sarkar

Yue Wang, Weishi Wang, Sha�q Joty, and Steven C.H. Hoi. 2021. CodeT5: Identi�er-aware Uni�ed Pre-trained Encoder-
Decoder Models for Code Understanding and Generation. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, Online and Punta Cana, Dominican Republic,
8696–8708. https://doi.org/10.18653/v1/2021.emnlp-main.685

Jiayi Wei, Greg Durrett, and Isil Dillig. 2023. TypeT5: Seq2seq Type Inference using Static Analysis. arXiv:2303.09564 [cs.SE]
Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. 2020. LambdaNet: Probabilistic Type Inference using Graph Neural

Networks. In International Conference on Learning Representations. https://openreview.net/forum?id=Hkx6hANtwH
Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A Systematic Evaluation of Large Language

Models of Code. In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming (San Diego,
CA, USA) (MAPS 2022). Association for Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/
3520312.3534862

Fangke Ye, Jisheng Zhao, and Vivek Sarkar. 2021. Advanced Graph-Based Deep Learning for Probabilistic Type Inference.
arXiv:2009.05949 [cs.PL]

Tong Zhou, Jun Shirako, Anirudh Jain, Sriseshan Srikanth, Thomas M. Conte, Richard Vuduc, and Vivek Sarkar. 2020.
Intrepydd: Performance, Productivity, and Portability for Data Science Application Kernels. In Proceedings of the 2020
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Re�ections on Programming and Software
(Virtual, USA) (Onward! 2020). Association for Computing Machinery, New York, NY, USA, 65–83. https://doi.org/10.
1145/3426428.3426915

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 249. Publication date: October 2023.

https://doi.org/10.18653/v1/2021.emnlp-main.685
https://arxiv.org/abs/2303.09564
https://openreview.net/forum?id=Hkx6hANtwH
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3520312.3534862
https://arxiv.org/abs/2009.05949
https://doi.org/10.1145/3426428.3426915
https://doi.org/10.1145/3426428.3426915

	Abstract
	1 Introduction
	2 Background
	2.1 Concrete Type Inference
	2.2 SMT Solver and SMT Based Type Inference
	2.3 Intrepydd Programming Language

	3 Overview of Our Approach
	4 Concrete Type Inference by Combining Machine Learning and SMT Solving
	4.1 Machine Learning Type Inference
	4.2 SMT Solving Type Inference
	4.3 Combining Machine Learning with SMT Solving

	5 Evaluation
	5.1 Experimental Setup
	5.2 Evaluation of Machine Learning Type Inference
	5.3 Evaluation of SMT Solving Type Inference
	5.4 Evaluation of the Combination of Machine Learning and SMT Solving
	5.5 Performance Benchmarking with Compiler Integration

	6 Related Work
	7 Conclusion
	References

