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Abstract

Much of the past work on dynamic data-race and determinacy-race detection algorithms for task
parallelism has focused on structured parallelism with fork-join constructs and, more recently,
with future constructs. This paper addresses the problem of dynamic detection of data-races and
determinacy-races in task-parallel programs with promises, which are more general than fork-join
constructs and futures. The motivation for our work is twofold. First, promises have now become a
mainstream synchronization construct, with their inclusion in multiple languages, including C++,
JavaScript, and Java. Second, past work on dynamic data-race and determinacy-race detection for
task-parallel programs does not apply to programs with promises, thereby identifying a vital need
for this work.

This paper makes multiple contributions. First, we introduce a featherweight programming
language that captures the semantics of task-parallel programs with promises and provides a basis for
formally defining determinacy using our semantics. This definition subsumes functional determinacy
(same output for same input) and structural determinacy (same computation graph for same input).
The main theoretical result shows that the absence of data races is sufficient to guarantee determinacy
with both properties. We are unaware of any prior work that established this result for task-parallel
programs with promises. Next, we introduce a new Dynamic Race Detector for Promises that we
call DRDP. DRDP is the first known race detection algorithm that executes a task-parallel program
sequentially without requiring the serial-projection property; this is a critical requirement since
programs with promises do not satisfy the serial-projection property in general. Finally, the paper
includes experimental results obtained from an implementation of DRDP. The results show that,
with some important optimizations introduced in our work, the space and time overheads of DRDP
are comparable to those of more restrictive race detection algorithms from past work. To the best
of our knowledge, DRDP is the first determinacy race detector for task-parallel programs with
promises.
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23:2 Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises

1 Introduction

In recent years, promises have been incorporated as a general synchronization construct into
multiple mainstream languages, including C++ [17], Java [28], and JavaScript [27]. A promise
is a wrapper for a data payload that is initially empty. It typically has two operations which
we refer to as set and get. Each get operation blocks until the promise receives a value for
its payload; multiple get operations may be performed on the same promise from multiple
tasks, and they all return the same value. Figure 1 shows the usage: an async task sets the
promise at line 5, and the main task gets the promise at line 9.

1 x ← alloc
2 y ← new_promise
3 async {

4 store 5 to x

5 y.set
6 return
7 }

8 a ← load x

9 y.get
10 b ← load x

11 return

Figure 1 Example program

A promise with a set payload is referred to as a fulfilled
promise. Following standard conventions, we assume that
promises obey the single-assignment policy, where an invoca-
tion of set on a fulfilled promise (i.e., a second assignment)
will induce a runtime error. Compared to futures [20], promises
generalize the semantics for synchronization in that a promise
need not be bound to the return value of a specific task; instead,
any task can choose to perform a set operation on a given
promise. Promises support arbitrary point-to-point synchro-
nization wherein one or more tasks can await the arrival of a
payload for which the producer task is not known in advance.
However, it has been observed that the convenience of this gen-
erality may also be accompanied by the increasing complexity
of dynamic analysis for bug detection in parallel programs [42].

As with any source of parallelism, accesses to shared mem-
ory locations must be correctly ordered to avoid determinacy
races [15], defined as race conditions causing non-determinism. A determinacy race often
results from a data race [26, 31], which occurs when two concurrent memory accesses operate
on the same memory location and at least one of them is a write. A key result in our paper
is that the absence of data races is sufficient to guarantee determinacy for task-parallel
programs with promises; in contrast, this property does not hold for programs that use
mutual exclusion constructs such as locks or transactions.

For dynamic race detectors, enumerating all possible inputs is usually intractable; therefore,
they are typically per-input or per-schedule race detectors. Per-input race detectors report all
potential races for a given input by covering all possible thread schedules [15,30,31,35,43–45],
whereas per-schedule race detectors only cover the observed schedule when analyzing a
program’s execution [1, 16, 33]. However, prior work related to dynamic determinacy race
detection has some major limitations:

1. None of these race detectors support promises.
2. No formal definition of “determinacy” is provided. For example, in the SP-Bags paper [15],

the authors state “[determinacy race]... may cause the program to behave nondetermin-
istically. That is, different runs of the same program may produce different behaviors”.
However, no formal definition was provided for what is meant by “different behaviors.”

3. It has been observed in some past work (e.g., [7, 31,35]) that for certain classes of task-
parallel programs, data-race freedom leads to determinacy but no formal proof was given
for this observation.

In this paper, we introduce a featherweight programming language that captures the
semantics of Task-Parallel Programs with Promises (TP3) and use it as a basis for formally
defining determinacy, along with a proof that data-race freedom implies both structural and
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functional determinacy for TP3. We also designed and implemented a race detector for TP3.
A major obstacle is that the tasks issuing get/set operations on a given promise cannot be
identified in advance. As a result, TP3 do not satisfy the serial-projection property [32], i.e.,
the property that a sequential execution of the program with all parallel constructs removed
is guaranteed to be a legal execution of the original parallel program. This feature is utilized
by a number of dynamic race detectors [4,15,30,35,37]. Without this property, the sequential
execution of a parallel program may be blocked by a get operation. To address this and
other challenges, we extended the Habanero-C/C++ library [8] to enable correct single-
worker execution of such programs via cooperative task switching. However, keeping track of
happens-before relationships also becomes more challenging in the presence of task switching.
Efficient data structures used previously [4,15,30,35,37] rely on the serial-projection property
to maintain happens-before information correctly and cannot directly be used for programs
with promises.

In summary, the key contributions of this paper are as follows:

1. A formalization of determinacy for TP3 using a featherweight programming language
(Section 2).

2. A proof that TP3 are guaranteed to be determinate in the absence of data races (Section 3).
3. A new dynamic race detection algorithm for TP3 called Determinacy Race Detector for

Promises (DRDP, Section 4). To the best of our knowledge, this is the first precise and
efficient per-input race detector for TP3.

4. An implementation of DRDP on top of the Habanero-C/C++ library and its evaluation
on a set of benchmarks using promises (Section 5). The results show that, with some
essential optimizations introduced in our work, the space and time overheads of DRDP
are comparable to those of more restrictive race detection algorithms from past work.

2 A Featherweight Language for Task-Parallel Programs with Promises

In this section, we introduce a featherweight language that features task parallelism and
promises to establish determinacy. Our language is Turing-complete. We do not include
functions and types because we aim to use this core language to prove properties of dynamic
program executions that are possible from a given static program, rather than using this
language for static program analysis.

2.1 Language Syntax
Figure 2 lists the syntax of our language. A program consists of a sequence of statements
terminated by a return. A single statement can be task creation (async)1, a memory
operation (alloc, load, and store), a promise operation (new_promise, set, get), a local
variable assignment (x ← e), or a conditional loop (while). We use symbols x and y to denote
local variables within a specific task, along with an LLVM-style syntax and convention.

The language syntax introduces two types of variables: local variables and shared variables.
Each task has a set of scoped local variables which must satisfy the single-assignment rule;
apart from local variables, tasks may also access shared variables using memory operations.
In fact, the only way for two tasks2 to share data is via memory operations.

1 We do not include join operations like finish and sync in our language, since they can be modeled
using sets of promises.

2 For convenience, the main program is considered to be a root task.

ECOOP 2023
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Program P ∶∶= s ; P ∣ return

Statement s ∶∶= m

∣ async{P } (create asynchronous task)
∣ x ← new_promise

∣ x.set

∣ x.get

∣ x ← e
∣ while (0 ≠ load y) {P }

Memory Operation m ∶∶= y ← alloc

∣ x ← load y

∣ store e to y

Expression e ∶∶= x (local variable)
∣ y (local variable that saves shared variable name)
∣ c (integer constant)
∣ e1 + e2

Runtime value k ∶∶= c ∣ r ∣ p

Figure 2 Syntax of the core language

Shared variables are modeled as a global map (i.e., memory), in which each instance has
a unique name assigned during its allocation; this name serves as a reference for operating
on the corresponding shared variable. Statement y ← alloc allocates a new shared variable,
with its reference saved into y. Statement x ← load y retrieves a shared variable’s content
using the reference in local variable y and saves the retrieved content into another local
variable x. Likewise, statement store e to y locates a shared variable using the reference in
y and updates the shared variable’s content with value e.

Statement x ← e initializes single-assignment local variable x with the value e. According
to the syntax, e could be an integer, a local variable, or a sum of two expressions. Statement
async{P } spawns a concurrent task to execute the body P . Statement while (0 ≠ load y) {P }
will continuously execute the loop body P until the condition no longer holds. Statement x ←

new_promise creates a new promise, and saves a reference to the promise in local variable
x. Statement x.set signals promise x, and statement x.get blocks until a task issues a
set operation on promise x. To simplify the presentation, we eschew the data payload of
promises, thus only offering synchronization functionality. Communicating data through a
promise is still possible, but must be encoded using additional shared variables.

2.2 Runtime State

The runtime state σ of our language is a pair σ = (M,G), where M maps shared variables
into runtime values, and a computation graph G. We denote a map M as {r1 ∶ k1, r2 ∶
k2, . . . rn ∶ kn}. We use the notation M [r ∶= k] to extend M . We define computation
graphs G inductively using the rules in Figure 3.

In a computation graph G, nodes represent the states of tasks and promises across
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n ∶∶= t ∣ Unful(p) ∣ Ful(p) Runtime nodes
t ∶∶= [f, P, L] Task nodes
G ∶∶= t

∣ G + t1
cont
−−−−→ t2 Continue edges

∣ G + t2
fork
←−−−− t1

cont
−−−−→ t3 Fork edges

∣ G + Unful(p) np
←−− t1

cont
−−−−→ t2 New promise edges

∣ G + Unful(p) cont
−−−−→ Ful(p) set

←−−− t1
cont
−−−−→ t2 Set edges

∣ G + t1
cont
−−−−→ t2

join
←−−−− Ful(p) Join edges

R-NAT
c ⇓tmem

c

R-ADD
e1 ⇓tmem

c1 e2 ⇓tmem
c2

e1 + e2 ⇓tmem
c1 + c2

R-VAR
x ⇓tmem

tmem[x]

Figure 3 Computation graph and reduction rule

time, and edges represent happens-before relations. There are three types of nodes in a
computation graph: a task node t, an unfulfilled promise Unful(p), and fulfilled promise Ful(p).
A task node t is a triple that includes a task name f , a program P to execute, and a map L
representing the task’s local variables. We define three helper functions to obtain the content
of a task node t: ttid, tcode, and tmem, which return the task name (t.f), the program (t.P ),
and the local variable map (t.L), respectively.

The base case of a computation graph is a task node t. Notation G + t1
cont
−−−−→ t2 depicts

a computation graph acquired by adding a new continue edge from t1 to t2 on top of the
original graph G. Notation G + t2

fork
←−−−− t1

cont
−−−−→ t3 captures the semantics of task creation:

node t1 issues the task creation, node t2 represents the child task, and node t3 represents
the continuation after spawning t2. Since t2 and t3 may happen in parallel, there exists no
path between the two nodes. Notation G + Unful(p) np

←−− t1
cont
−−−−→ t2 represents the semantics

of promise creation. Node Unful(p) represents the spawned instance of promise and t2

represents the continuation after promise creation. Notation G + Unful(p) cont
−−−−→ Ful(p) set

←−−−

t1
cont
−−−−→ t2 depicts an invocation of set issued by node t1. Node Ful(p) represents the

fulfilled promise after the set, and t2 represents the task state upon the set operation.
Finally, Notation G + t1

cont
−−−−→ t2

join
←−−−− Ful(p) signifies a get operation. Node t1 issues the

synchronization, while node t2 observes the synchronization.
Example. The corresponding computation graph of the example program in Figure 1 is
shown in Figure 4. Note that there is a determinacy race between line 4 and line 8 in the
program. In different executions, variable a can be either 0 or 5. The race is also reflected in
the computation graph, as no path connects the two nodes in red. On the other hand, the
store in line 4 happens before the load on line 10 because of the get operation in line 9; the
final value of variable b will always be five, regardless of the actual task schedule.

ECOOP 2023
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main
x ← alloc

{}

main
y ← new_pm

{x:r}

main
a ← load x

{x:r y:p}

main
async t1
{x:r y:p}

main
y.get

{x:r y:p 
a:0/5}

main
b ← load x

{x:r y:p 
a:0/5}

main
return

{x:r y:p 
a:0/5 b:5}

t1
store 5 to x

{x:r y:p}

t1
y.set

{x:r y:p}

t1
return

{x:r y:p}

Unful (p)

Ful (p)

Task Node

Unfulfilled Promise Node

Fulfilled Promise Node

Fork Edge

Continue Edge

New Promise Edge

Set Edge

Join Edge

Figure 4 Associated computation graph of Figure 1

Leveraging the formal definition in Figure 3, we formalize the happens-before relation
between two task nodes and memory accesses performed by task nodes.

▶ Definition 1 (Happens-before). We say node v precedes or happens before node u if and
only if one directed path from v to u exists in the computation graph. We denote the
happens-before relation as v ↝ u. We use v ↝̸ u to indicate that there exists no path from u

to v.

▶ Definition 2 (May-happen-in-parallel). Node v may happen in parallel with node u, denoted
by v ∥ u, iff u ↝̸ v and v ↝̸ u.

▶ Definition 3 (Read and Write). A task node t reads from a shared variable r if 1).
tcode = {x ← load y ; P }, tmem[y] = r, or 2). tcode = {while (0 ≠ load y) {P ′} ; P },
tmem[y] = r. A task node t writes to a shared variable r if tcode = {store x to y ; P } and
tmem[y] = r. Node t accesses a shared variable r if node t reads from or writes to r.

2.3 Small-step Operational Semantics
We introduce the small-step operational semantics, denoted by σ → σ

′, in Figure 5. Spawning
a task g with async creates a new node for the child task, which inherits the local memory of
the parent task f (Rule 1). Memory allocation creates a new shared variable r, initializes
it with 0, and assigns its name r to y in the local memory (Rule 2). A load retrieves the
content of shared variable r from the shared memory M . A store writes the value e to shared
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(1) G-ASYNC
tcode = async{P ′} ; P g does not occur in G ttid = f

(M,G) → ( M,G + [g, P ′
, tmem] fork

←−−−− t
cont
−−−−→ [f, P, tmem] )

(2) G-ALLOC
tcode = y ← alloc ; P r ∉M ttid = f

(M,G) → ( M [r ∶= 0], G + t
cont
−−−−→ [f, P, tmem[y ∶= r]] )

(3) G-LOAD
tcode = x ← load y ; P tmem[y] = r M [r] = k ttid = f

(M,G) → ( M,G + t
cont
−−−−→ [f, P, tmem[x ∶= k]] )

(4) G-STORE
tcode = store e to y ; P e ⇓tmem

k tmem[y] = r ttid = f

(M,G) → ( M [r ∶= k], G + t
cont
−−−−→ [f, P, tmem] )

(5) G-PROMISE
tcode = x ← new_promise ; P Unful(p) ∉ G ttid = f

(M,G) → ( M,G + Unful(p) np
←−− t

cont
−−−−→ [f, P, tmem[x ∶= p]] )

(6) G-SET
tcode = x.set ; P tmem[x] = p Unful(p) no outgoing edges in G ttid = f

(M,G) → ( M,G + Unful(p) cont
−−−−→ Ful(p) set

←−−− t
cont
−−−−→ [f, P, tmem] )

(7) G-GET
tcode = x.get ; P tmem[x] = p Ful(p) ∈ G ttid = f

(M,G) → ( M,G + t
cont
−−−−→ [f, P, tmem] join

←−−−− Ful(p) )

(8) G-ASSIGN
tcode = x ← e ; P e ⇓tmem

k ttid = f

(M,G) → ( M,G + t
cont
−−−−→ [f, P, tmem[x ∶= k]] )

(9) G-WHILE-1
tcode = while (0 ≠ load y) {P ′} ; P M [tmem[y]] = 0 ttid = f

(M,G) → ( M,G + t
cont
−−−−→ [f, P, tmem] )

(10) G-WHILE-2
tcode = while (0 ≠ load y) {P ′} ; P M [tmem[y]] ≠ 0 ttid = f

(M,G) → ( M,G + t
cont
−−−−→ [f, P ′ ; while (0 ≠ load y) {P ′} ; P, tmem] )

Figure 5 Small-step semantics

variable r (variable name r is stored in local variable y). Creating a promise adds a new
node that marks promise p as unfulfilled (Rule 5). Our semantics only allows a single set per
promise; thus, a pre-condition of Rule 6 is to ensure that promise p is unfulfilled. Getting a
promise links the fulfilled promise Ful(p) to the continuation node [f, P, tmem], thus adding a
happens-before relation from the set to the get (Rule 7). Assignment extends local memory
with a new variable x, which has the value of evaluating expression e (Rule 8). Rules 9 and
10 handle a while loop in a standard way.

Let root(P ) denotes runtime state (m, [main, P, l]): a runtime state that holds the initial
memory m and the initial computation graph with a single vertex [main, P, l], where l is
the local memory for the single vertex. When it is clear from the context we may say P to
signify the runtime state root(P ). Let notation P ⇓ σ be defined as root(P ) →⋆

σ and σ /→ σ
′

ECOOP 2023
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for any σ′.
We use a naming convention that gives unique and consistent name to each variable in

the operational semantics. “unique” means whenever a new task, variable, or promise is
being created, it will be given a unique name that does not yet exist in σ; “consistent” means
the name is the same name that other program runs will have when creating this new task,
variable or promise.

3 Proof of Determinism

In this section, we show that determinacy-race freedom implies determinism for programs in
our featherweight language. Our proof structure is adapted from prior work on Concurrent
Collection (CnC) [6, Theorem 1]. CnC applies a single-assignment policy on all shared
variables (called data collections in CnC) to assure determinism. An important distinction
between this work and [6] is that our formalism expresses both promises and shared memory,
whereas [6] only expresses a construct akin to promises. Our proof utilizes the property of
determinacy-race freedom to show that the shared memory and the computation graph will
be determinate for a given input (the initial program state root(P )).

▶ Definition 4 (Determinacy Race and Determinacy-Race Freedom). A determinacy race is
a triple (r, t1, t2); it happens on a shared variable r if and only if two task nodes t1 and t2
access r, at least one of them conducts a write, and t1 ∥ t2. A computation graph G is
determinacy-race-free if and only if for any task nodes t1, t2 in G, there is no determinacy
race (r, t1, t2) for any shared variable r. A program P is determinacy-race-free if for any G
and M such that P →

⋆ (M,G), G is determinacy-race-free.

We define an ordering ≤ on runtime states such that σ ≤ σ
′ if and only if dom(σ.M ) ⊆

dom(σ′
.M ) and σ.G is a subgraph of σ′

.G. Next, we establish the necessary lemmas to prove
our main result: if P ⇓ σ and P ⇓ σ

′, then σ = σ
′.

▶ Lemma 5 (Monotonicity). If σ → σ
′, then σ ≤ σ

′

Proof. The proof follows by case analysis on the derivation of σ → σ
′. Let σ = (M,G). The

key insight is that nodes and edges are only added to G; nodes and edges are never removed.
Similarly, the domain of M either grows or remains the same. We omit the proof details. ◀

We use σ →v σ
′ to denote that executing node v triggers the state transition.

▶ Lemma 6 (Independence). Let σ →v σ
′, σ →u σ

′′ and σ′
≠ σ

′′. We have v ∥ u.

Proof. If v ↝ u or u ↝ v, we can only derive either σ′ or σ′′ from σ, but not both. ◀

The next Lemma proves what we call strong local confluence. This property essentially
implies that from the same program state σ, if there exists more than one choice to proceed,
those different choices will eventually proceed to the same state σc. The proof also reveals
why determinacy-race freedom is necessary for this property.

▶ Lemma 7 (Strong Local Confluence). Let P be determinacy-race-free and P →
∗
σ. If

σ →v σ
′ and σ →u σ

′′, then there exists σc, i, j such that σ′
→

i
σc, σ′′

→
j
σc, i ≤ 1 and j ≤ 1.

Proof. If v = u, we have σ
′
= σ

′′; in this case σc = σ
′
, i = 0, j = 0. If v ≠ u, we claim

σ
′
→u σc, σ

′′
→v σc, i = 1, j = 1. To prove the claim, we do a case analysis on the rule used to

derive σ →v σ
′.
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(3) G-LOAD: We know vcode = x ← load y ; P ′ and vmem[y] = r and M [r] = k. We have
σ
′
.G = σ.G+ v

cont
−−−−→ [vtid, vmem[x ∶= k], P ′], σ′

.M = σ.M . Let us do a case analysis of the
rule used to derive σ →u σ

′′.

1. G-ALLOC: We know ucode = y
′
← alloc ; P ′′. We have σ

′′
.G = σ.G + u

cont
−−−−→

[utid, umem[y′ ∶= r′], P ′′], σ′′
.M = σ.M [r′ ∶= 0]. Because our naming system is unique,

we have r
′
≠ r. We can pick σc such that σc.M = σ

′′
.M , σc.G = σ

′′
.G + v

cont
−−−−→

[vtid, vmem[x ∶= k], P ′]. It is clear that σ′′
→v σc. It is also true that σ′

→u σc because
our naming system is consistent among different execution. In this case, i = 1, j = 1.

2. G-LOAD: ucode = x
′
← load y

′ ; P ′′ and umem[y′] = r
′ and M [r′] = k

′. We have
σ
′′
.G = σ.G+ u

cont
−−−−→ [utid, umem[x′ ∶= k′], P ′′], σ′′

.M = σ.M . In this case, it is fine that
r
′
= r because concurrent reads on the same memory location are allowed. We can

pick σc such that σc.M = σ
′′
.M , σc.G = σ

′′
.G + v

cont
−−−−→ [vtid, vmem[x ∶= k], P ′]. It is

clear that σ′
→u σc and σ

′′
→v σc. In this case, i = 1, j = 1.

3. G-STORE: We know ucode = store e′ to y
′ ; P ′′ and e′ ⇓ k′ and umem[y′] = r′. We

have σ′′
.G = σ.G + u

cont
−−−−→ [utid, umem, P

′′], σ′′
.M = σ.M [r′ ∶= k

′]. If r′ = r, this is
a determinacy race by Definition 4 and Lemma 6. Because r′ ≠ r, we can pick σc

such that σc.M = σ
′′
.M, σc.G = σ

′′
.G + v

cont
−−−−→ [vtid, vmem[x ∶= k], P ′]. It is clear that

σ
′
→u σc and σ

′′
→v σc. In this case, i = 1, j = 1.

4. Any other rules: we omit the details for other rules because the proof is similar to the
above cases.

(4) G-STORE: We know vcode = store e to y ; P ′ and e ⇓ k and vmem[y] = r. We have
σ
′
.G = σ.G + v

cont
−−−−→ [vtid, vmem, P

′], σ′
.M = σ.M [r ∶= k]. Let us do a case analysis of the

rule used to derive σ →u σ
′′.

1. G-STORE: We know ucode = store e′ to y
′ ; P ′′ and e′ ⇓ k′ and umem[y′] = r′. We

have σ′′
.G = σ.G + u

cont
−−−−→ [utid, umem, P

′′], σ′′
.M = σ.M [r′ ∶= k

′]. If r′ = r, this is
a determinacy race by Definition 4 and Lemma 6. Because r′ ≠ r, we can pick σc

such that σc.M = σ
′′
.M [r ∶= k], σc.G = σ

′′
.G + v

cont
−−−−→ [vtid, vmem, P

′]. It is clear that
σ
′
→u σc and σ

′′
→v σc. In this case, i = 1, j = 1.

2. G-WHILE-*: We know ucode = while (0 ≠ load y
′) {P ′′′} ; P ′′ and umem[y′] = r′. If

r
′
= r, this is a determinacy race by Definition 4 and Lemma 6. Because r′ ≠ r, we

can pick σc such that σc.M = σ
′′
.M [r ∶= k], σc.G = σ

′′
.G + v

cont
−−−−→ [vtid, vmem, P

′]. It is
clear that σ′

→u σc and σ
′′
→v σc. In this case, i = 1, j = 1.

3. Any other rules: we omit the details for other rules because the proof is similar to the
above cases.

(6) G-SET: we know vcode = x.set ; P ′ and vmem[x] = p and Unful(p) has no outgoing
edge. We have σ′

.G = σ.G+Unful(p) cont
−−−−→ Ful(p) set

←−−− v
cont
−−−−→ [vtid, vmem, P

′], σ′
.M = σ.M .

Let us do a case analysis of the rule used to derive σ →u σ
′′.

1. G-Set: we know ucode = x
′
.set ; P ′′ and umem[x′] = p′ and Unful(p′) has no outgoing

edge. We have σ
′′
.G = σ.G + Unful(p′) cont

−−−−→ Ful(p′) set
←−−− u

cont
−−−−→ [utid, umem, P

′′],
σ
′′
.M = σ.M . If p = p′, this violates the single set policy for promises. Because p ≠ p′,

we can pick σc such that σc.M = σ
′′
.M, σc.G = σ

′′
.G + Unful(p) cont

−−−−→ Ful(p) set
←−−− v

cont
−−−−→

[vtid, vmem, P
′]. It is clear that σ′

→u σc and σ
′′
→v σc. In this case, i = 1, j = 1.

2. G-GET: we know ucode = x
′
.get ; P ′′ and umem[x′] = p

′ and Ful(p′) ∈ G. We have
σ
′′
.G = σ.G + u

cont
−−−−→ [utid, umem, P

′′] join
←−−−− Ful(p′), σ′′

.M = σ.M . In this case, we must
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have p ≠ p
′ because otherwise, we cannot make the step σ →u σ

′ until v is executed.
We can pick σc such that σc.M = σ

′′
.M , σc.G = σ

′′
.G+Unful(p) cont

−−−−→ Ful(p) set
←−−− v

cont
−−−−→

[vtid, vmem, P
′]. It is clear that σ′

→u σc and σ
′′
→v σc. In this case, i = 1, j = 1.

3. Any other rules: we omit the details for other rules because the proof is similar to the
above cases.

(7) G-GET: we know vcode = x.get ; P ′ and vmem[x] = p and Ful(p) ∈ G. We have
σ
′
.G = σ.G + v

cont
−−−−→ [vtid, vmem, P

′] join
←−−−− Ful(p), σ′

.M = σ.M . Let us do a case analysis
of the rule used to derive σ →u σ

′′.
1. G-GET: we know ucode = x

′
.get ; P ′′ and umem[x′] = p

′ and Ful(p′) ∈ G We have
σ
′′
.G = σ.G+u

cont
−−−−→ [utid, umem, P

′′] join
←−−−− Ful(p′), σ′′

.M = σ.M . In this case, it is fine if
p = p

′ because concurrent get operations performed on the same promise is allowed. We
can pick σc such that σc.M = σ

′′
.M, σc.G = σ

′′
.G + v

cont
−−−−→ [vtid, vmem, P

′] join
←−−−− Ful(p).

It is clear that σ′
→u σc and σ

′′
→v σc. In this case, i = 1, j = 1.

2. Any other rules: we omit the details for other rules because the proof is similar to the
above cases.

Any other rules v and u could execute: we omit the details for other rules because the
proof is similar to the above cases.

◀

▶ Lemma 8 (Strong One-Sided Confluence). Let P be determinacy-race-free and P →
∗
σ. If

σ → σ
′, σ →

m
σ
′′, where 1 ≤ m, then there exist σc, i, j such that σ′

→
i
σc, σ′′

→
j
σc, i ≤ m

and j ≤ 1.

Proof. We prove it by inducting on m.
Base case: m = 1. Proved by Lemma 7.
Induction step: suppose σ →

m
σ
′′
→ σ

′′′. By our induction hypothesis, the lemma holds
for m. We have σ′

c, i
′
, j

′ such that σ′
→

i
′

σ
′
c and σ

′′
→

j
′

σ
′
c and i

′
≤ m and j

′
≤ 1. We want to

prove the lemma holds for m + 1. There are two cases based on the value of j ′:

1. j ′ = 0. In this case, σ′
c = σ

′′. We pick σc = σ
′′′
, i = i

′ + 1, j = 0. Because i′ ≤ m, we have
i ≤ m + 1, which obeys the lemma.

2. j ′ = 1. In this case, we have σ′′
→ σ

′′′ and σ
′′
→ σ

′
c. By Lemma 7, there exist σd, a, b such

that σ′′′
→

a
σd and σ

′
c →

b
σd and a ≤ 1 and b ≤ 1. So we also have σ′

→
i
′

σ
′
c →

b
σd.

As a result, we pick σc = σd, i = i
′ + b, j = a. This is fine because i = i′ + b ≤ m + 1 and j =

a ≤ 1.
◀

▶ Lemma 9 (Strong Confluence). Let P be determinacy-race-free and P →
∗
σ. If σ →

n
σ
′,

σ →
m
σ
′′, where 1 ≤ m, 1 ≤ n, then there exist σc, i, j such that σ′

→
i
σc, σ′′

→
j
σc, i ≤ m and

j ≤ n.

Proof. We prove it by inducting on n.
Base case: n = 1. Proved by Lemma 8.
Induction step: suppose σ →

n
σ
′
→ σ

′′′. By our induction hypothesis, the lemma holds for
n. We have σ′

c, i
′
, j

′ such that σ′
→

i
′

σ
′
c and σ

′′
→

j
′

σ
′
c and i

′
≤ m and j

′
≤ n. We want to

prove the lemma holds for n + 1. There are two cases based on the value of i′:

1. i′ = 0. In this case, σ′
= σ

′
c. We pick σc = σ

′′′
, i = 0, j = j

′ + 1. Because j ′ ≤ n, we have
j ≤ n + 1, which obeys the lemma.
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2. i′ ≥ 1. In this case, we have σ′
→ σ

′′′ and σ
′
→

i
′

σ
′
c. By Lemma 8, there exist σd, a, b such

that σ′′′
→

a
σd and σ

′
c →

b
σd and a ≤ i

′ and b ≤ 1. So we also have σ′′
→

j
′

σ
′
c →

b
σd.

As a result, we pick σc = σd, i = a, j = j
′ + b. This is fine because i = a ≤ i

′
≤ m and j =

j
′ + b ≤ n + 1.

◀

▶ Lemma 10 (Confluence). Let P be determinacy-race-free and P →
∗
σ. If σ →

∗
σ
′ and σ →

∗

σ
′′, then there exists σc such that σ′

→
∗
σc and σ′′

→
∗
σc.

Proof. Implied by Lemma 9 ◀

With Lemma 10, we are ready to present our main theorem. Notice that we do not assume
deadlock freedom for the program P . The notation P ⇓ σ is defined as P cannot make
further progress; some get operations never resume after blocking because no task elects to
set the required promises. However, our main theorem reveals that even if deadlock(s) exists
in a determinacy-race-free program P , any execution of P will still reach the same final state
(same shared memory, same computation graph).

▶ Theorem 11 (Determinism). Let P be determinacy-race-free. If P ⇓ σ and P ⇓ σ
′, then

σ = σ
′.

Proof. By Lemma 10, we have σc such that σ →
∗
σc and σ′

→
∗
σc. Given that neither σ nor

σ
′ can proceed, we must have σ = σ

′
= σc. ◀

4 DRDP Race Detection Algorithm

Race detection for parallel programs has evolved with the development of parallel pro-
gramming models. The widely-used ThreadSanitizer [33] and other vector-clock-based race
detectors [16, 21] work well for multithreaded programs with lock-based synchronization.
More recently, task-based parallel programming models have gained popularity for developing
parallel programs intended to be determinate, i.e., these programs are always expected to com-
pute the same results when given the same inputs. The work to be carried out is decomposed
into a large number of user-defined fine-grained tasks, and dependencies among tasks are
specified using join operations/futures/promises rather than locks. Task-parallel programs
execute on a group of worker threads, with the actual schedule of tasks on worker threads
determined adaptively and automatically by a runtime system. Although vector-clock-based
race detectors can be applied to task-parallel programs at the worker-thread level, such an
approach may also exhibit false negative results. For two tasks executing on the same worker
thread, a vector-clock-based race detector may enforce a happens-before relation between
them, and then fail to identify potential data races3. On the other hand, it is not practical
to use such race detectors by treating each task as a thread. Task-parallel programs may
create millions of tasks at runtime, making it intractable to store associated vector clocks of
spawned tasks in the memory space. Other researchers have also made similar observations
about the limitations of using the vector clock approach for task parallelism [29,44,45].

Per-input dynamic race detectors designed for task parallelism can usually be classified
by the task-parallel constructs they support. Different task-parallel constructs impose
different structural constraints on the computation graphs generated by programs, and

3 ThreadSanitizer limits the vector clock size to 256 [11], and can also exhibit false negatives for programs
with larger numbers of threads.
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the determinacy race detection problem becomes more challenging as the computation
graphs become more general [4, 15, 26, 30, 31]. For example, SP-Bags is a race detection
algorithm designed for spawn-sync task-parallel programs which only generate fully strict
computation graphs [15]. ESP-Bags is an extension of SP-Bags that can support the more
general terminally strict computation graphs [30] generated by async-finish task parallelism.
More recent algorithms have been introduced for task-parallel programs with futures, one
as an extension to async-finish constructs [35] and others as an extension to spawn-sync
constructs [37,43].

In this section, we introduce DRDP, a dynamic determinacy race detector taking task
parallelism and promises into account. DRDP is based on our theoretical conclusion
in Section 3. For better time and memory efficiency, we make two revisions to the notation
of computation graph. Such changes do not affect the precision of race detection.

We introduce step nodes to replace task nodes. A step node is a sequence of statements
without task creation, set, or get except the last statement. For example, node s1
in Figure 6 is a step node ending with a task creation.
We simplify the computation graph construction related to promises. Every promise has
only one corresponding node in the computation graph (see promises a and b in Figure 6),
created when the set happens.

x  alloc←
y  new_pm    ←
async {   // task f
  p  new_pm ←
  store p to x
  y.set   // promise a
  p.get
  return
}
y.get
async {   // task g
  p  load x←
  p.set   // promise b
  return
}
return

1
2
3
4
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6
7
8
9

10
11
12
13
14
15
16

 S1

S2

S3
S7

S4
S5

S6

S8

S9

S1

S4

S5

S9

S2

S3

S7

S6

S8

a

b

mainTask main

Task f

Task g

Step Node

 Fulfilled 
Promise

Node

Fork Edge

Continue Edge

Join Edge

Figure 6 Example program and its computation graph

As with other dynamic race detectors, DRDP consists of 1). a reachability data structure
that keeps track of the happens-before relationship and 2). a shadow memory that records
access history for every memory location. We first introduce our reachability structure, which
is built on-the-fly as the program executes.
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4.1 DRDP Reachability Data Structures
The reachability data structure of DRDP is adapted from previous work [31,35] on async-
finish task parallelism (but no support for promise). The statement “finish { s }” causes the
current task to execute the body s and wait for all spawned tasks, including transitively
created tasks within the finish statement.

We leverage Dynamic Program Structure Tree (DPST) [31] to encode happens-before
relations created by async-finish parallelism efficiently. Figure 7 shows an instance of DPST
associated with the example program in Figure 6. DPST resembles the computation graph
by nature. Each leaf node in the DPST represents a step node. Each internal node in the
DPST is either an async or a finish node, denoting an instance of such construct in the
program. Node A1 in Figure 7 represents the async in line 3 of the example program and A3
represents the one in line 11. The other two async nodes, A2 and A4, represent the promise
set in lines 6 and 13.

R

A1 s4 s5 A3 s9s1

s2 A2 s3 s7

a

s6 A4 s8

b

edges not
kept by
DPST

set task nt lsa
0 [main] [a]
1 [f] [b]
2 [g] (main, [a])
3 [a]
4 [b] (main, [a])

Figure 7 DPST and set information for the example program

For any two step nodes si, sj in a DPST, their happens-before relation (↝) can be
determined by examining the children of their least common ancestor (LCA). Assume si is to
the left of sj in the DPST. Among all children of the two node’s LCA (denoted as lca(si, sj)),
a node V (denoted as lca_lc(si, sj)) must exist such that V is a’s ancestor or a itself. If V is
not an async node, a ↝ b; otherwise, a ∥ b.

As an example, in Figure 7, step nodes s1 and s2 have the root R as their LCA. The
node V , in this case, is s1 itself because s1 is a child of R. Since s1 is a step node, DPST
will report s1 ↝ s2, which is confirmed by the path from s1 to s2 in Figure 6.
Limitation of DPST. DPST may report incorrect happens-before relationships when
naively applied to programs with promises. Let us consider step nodes s2 and s6 in Figure 7.
Their LCA is R, and among R’s children, the one that is s2’s ancestor is A1. The DPST-based
happens-before check will decide that s2 ∥ s6. However, Figure 6 clearly shows a path from
s2 to s6, so the happens-before check returns an incorrect result. The reason is that DPST
does not consider synchronization semantics brought by promises.

Thus, we need to maintain additional information for those happens-before relations
incurred by promises. We refer to those promise join edges in a computation graph as
non-tree joins (nt) because DPST does not store them. For other task joins kept by DPST,
we call them tree joins. The problem turns into how to store these non-tree joins efficiently.

Inspired by previous work [35], we use disjoint sets [12] to effectively save non-tree joins
information. Tasks synchronized by tree joins will be grouped into the same set. Each set
will maintain its non-tree joins, plus the lowest ancestor with at least one non-tree join,
which we refer to as the least-significant ancestor (LSA). How do we use and maintain set,
non-tree joins, and LSAs will be introduced in Section 4.3.
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DRDP Example. From a high-level perspective, DRDP checks happens-before relations in
two stages. It first carries out the DPST-based happens-before check. If the happens-before
check returns that the two steps may happen in parallel, DRDP conducts an additional
graph traversal on the computation graph. The graph traversal loops through non-tree joins
and LSAs to see if the two steps are ordered by non-tree joins.

We now explain how DRDP can find out s2 ↝ s6 by the information in Figure 7. DRDP
first checks DPST and finds lca_lc(s2, s6) is an async node, so it continues with the graph
traversal. Because s6 is in task g and task g is in set 2, DRDP examines the column nt of
set 2. In this case, we do not have any non-tree join for set 2. Finally, DRDP checks the
column lsa of set 2, realizes set 2’s lsa is the main task, and the main task has a non-tree
join from task a. Now, DRDP knows a ↝ s6. The goal becomes deciding if s2 ↝ a. DRDP
inspects DPST and finds lca_lc(s2, a) is a step node, which indicates s2 ↝ a. Now DRDP
can conclude s2 ↝ s6.

4.2 DRDP Task Scheduling and Shadow Memory
Existing race detectors [4, 15,30,35,37] that execute programs sequentially usually rely on
the serial-projection property, which ensures that there is a legal scheduling strategy that
executes a parallel program sequentially without any blocking. Crucially, however, programs
with promises do not enjoy the serial-projection property.

As a solution, our runtime follows a depth-first execution order and switches to task T ’s
parent task recursively when T is blocked. As soon as some other task S sets the promise
that T is waiting on, the worker thread will suspend task S and resume the execution of task
T . If the fulfilled promise P enables more than one task, we execute these enabled tasks in
the same order as they were placed in the waiting queue for promise P . The worker switches
back to task S after all tasks previously blocked on promise P are finished. If a deadlock
exists in the program, our race detector works up to the point of deadlock.

Shadow memory also needs careful design due to possible blockings. For each memory
location, we save the last step node that writes to it, plus a read list that records all step
nodes reading from the memory location after the last write. When a write occurs, if no race
is found with the recorded historical accesses, we empty the reader list and save the current
step node as the last write. When a read occurs, if no race is found with the last write, we
add it to the reader list.

4.3 Algorithm
DRDP algorithm is presented in Figure 8 and Figure 9. Figure 8 explains how we maintain
the reachability structure and the shadow memory, which happens per instruction of the
program being executed; Figure 9 defines procedure PRECEDE for happens-before check.
When encountering a read or write to memory location M , DRDP will do race checks as in
lines 40 - 44 and lines 45 - 55; if the function reports a race, it means a race exists between
current access and previous access to M .

The built-in function run_eager(U ) suspends the execution of current task T and starts
executing task U . For tasks returning from blocking, run_eager will resume their execution
from the first statement after blocking.

Now we briefly explain each callback executed by DRDP.
Task creation: When a task is created, we initialize some information and create a disjoint
set. The worker then starts executing the task until finished or blocked.
Task termination: We set the task state from active to finished.
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// Task creation:
// task T creates task U

1 SU = new set_info(U )
2 set[U.id] = SU

3 U.state = ACT IV E
4 U.parent = T.id
5
6 ST = set[T.id]
7 if ST .nt.isEmpty() then
8 SU .lsa = ST .lsa
9 else

10 SU .lsa = lsa_info (T.id, ST .nt)
11 end
12 run_eager(U )

// Task termination:
// task T terminates

13 T.state = F INISHED

// Promise set:
// task T sets promise P

14 P.setter_task_id = T.id
15 P.empty_task_id = (new task()).id
16 foreach task X waiting on P do
17 run_eager(X)
18 end

// Promise get:
// task T gets promise P

19 if P.satisfied == false then
20 T.state = BLOCKED
21 run_eager(T.parent)
22 end
23 x = new nt_info (P.empty_task.id)
24 ST = set[T.id]
25 ST .nt = ST .nt ∪ x

// Finish end:
// Finish F ends in task T

26 ST = set[T.id]
27 foreach task X in F do
28 SX = set[X.id]
3030 nt = ST .nt ∪ SX .nt
3232 lsa = ST .lsa
3434 ST = Union(ST , SX )
3636 ST .nt = nt
3838 ST .lsa = lsa
39 end

// Read check:
// step s reads from memory_location M

40 w = M.writer
41 if P RECEDE(w, s) == false then
42 report race
43 end
44 M.reader_list = M.reader_list + s

// Write check:
// step s writes to memory_location M

45 w = M.writer
46 if P RECEDE(w, s) == false then
47 report race
48 end
49 foreach r in M.reader_list do
50 if P RECEDE(r, s) == false then
51 report race
52 end
53 end
54 M.reader_list = {}
55 M.writer = s

Figure 8 DRDP algorithm parts that maintain data structures and shadow memory

Promise set: We create an empty task, and if any task is enabled, the worker will begin to
execute enabled tasks. The worker will go back to the current task sometime in the future.
Promise get: If the promise is not yet set, we block the current task and switch to its
parent recursively; if the promise is set, we add its empty task to the current set’s nt.
Finish end: This happens at the end of a finish statement. The finish’s owner task will
merge all spawned tasks in the finish by keeping its original LSA plus unionizing the tasks
and non-tree joins (nt) from the merged sets.
Read check: If current step s reads from memory location M , we first check race against
M ’s writer. If no race is reported, we directly add s to the reader_list.
Write check: If current step s writes to memory location M , we check race against M ’s
writer and all recorded steps in M ’s reader_list. If no race is reported, we clear the
reader_list and update M ’s writer to be the current step.
Reachability query: Figure 9 elucidates how we perform reachability checks in DRDP.
Given two step nodes a, b, we first examine if a precedes b by inspecting DPST. If lca_lc(a, b)
is not an async node, we return true; this is reflected in lines 3-5. Next, we check if the
previous task is still active starting from line 7. If a’s task is still active, either b is a’s
descendant, or a’s task sets the promise that b depends on; both cases indicate a ↝ b. The
remaining code in Figure 9 conducts a breadth-first search on the computation graph based
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on fields nt and lsa. Lines 23-39 search through non-tree joins. Lines 41 to 57 search through
lsa’s non-tree joins. We return false if there are no more step nodes to search.

▶ Theorem 12. DRDP’s race detection algorithm is sound and precise. For a program
P , if no execution with input ψ has any determinacy race, DRDP will not report any race
(sound). For a program P , if any execution with input ψ has a determinacy race, DRDP
will report the race (precise).

Proof. To relate the theoretical result given by Theorem 11, the input ψ here refers to the
initial program state root(P ). The proof is presented in Appendix A. ◀

▶ Theorem 13. Given a parallel program consisting of async, finish and promise that runs in
time T1 on one worker. Assume it creates P promises and Q async tasks. Let H be the height
of DPST at the end of the execution, and m be the number of non-tree joins. DRDP can be
implemented to check this program for determinacy races in O(T1 ∗Q ∗H ∗m ∗α(T1, P +Q))
time, where α is the inverse Ackermann function.

Proof. For a single run of PRECEDE, it could take up to O(H ∗m ∗ α(T1, P +Q)) in the
worst case if it checks all non-tree joins, and each check contains one DPST traversal plus a
disjoint set operation. The maximum count of disjoint sets is (P +Q) because we create one
set for each task and one set for each empty task.

The PRECEDE routine may be called Q times for each shadow memory location access.
This is because the reader list for a single memory location can be as large as size Q if we
save all the tasks. We have at most T1 shared memory access; thus, with DRDP checking
races, the original program can be finished in O(T1 ∗Q ∗H ∗m ∗ α(T1, P +Q)) time. ◀

4.4 Optimizations
We introduce two optimization techniques used for DRDP. The impacts of these optimizations
are respectively evaluated in Sections 5.5 and 5.6.

4.4.1 Adaptive Selection of Graph Traversal Order
A complete computation graph traversal can become necessary without restricted graph
structures that enable fast encoding and checking reachability. To accelerate this part, how
to traverse all non-tree joins and lsa is the key. We optimize the graph traversal in two ways:
first, rather than conducting a depth-first search starting from the current node, we apply a
breadth-first search instead; second, when iterating through non-tree joins, we start from the
latest join to the oldest. The impact of the proper selection of these two choices is evaluated
in Section 5.5.

4.4.2 Redundant Check Elimination
A single step node may access the same memory location multiple times. This may introduce a
substantial amount of unnecessary duplicate checks. We present the performance improvement
by skipping these redundant checks in Section 5.6. Here we introduce our approach based
on the polyhedral model, a powerful linear algebraic framework for affine program analysis,
transformations, and code generation.

When the code region of interest are composed of affine loops – i.e., their loop bounds
and array accesses are affine combinations of symbolic constants and outer loop iterators,
that region is converted into SCoP format [3]. This format precisely specifies the set of
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Input: step nodes a, b
1 Procedure PRECEDE(a, b)
2 SB = set[b.task_id]
3 if lca_lc(a, b).type ≠ ASY NC then
4 return true
5 end
6
7 if task[a.task_id].state == ACT IV E then
8 return true
9 end

10
// breadth-first search the computation graph via nt and lsa

11 visited = set()
12 nt − steps = deque()
13 lsa − sets = deque()
14 foreach t in SB .nt do
15 nt − steps.push_back(task[t.task_id].last_step_node)
16 end
17
18 if SB .lsa ≠ NULL then
19 lsa − sets.push_back(SB .lsa)
20 end
21
22 while true do
23 while nt − steps.size > 0 do
24 step = nt − steps.pop_front()
25 if lca_lc(a, step).type ≠ ASY NC then
26 return true
27 end
28
29 visited.insert(step.task_id)
30 Sstep = set[step.task_id]
31 foreach t in Sstep.nt do
32 if t.task_id not in visited then
33 nt − steps.push_back(task[t.task_id].last_step_node)
34 visited.insert(t.task_id)
35 end
36 end
37
38 add Sstep.lsa to lsa − sets if exists
39 end
40
41 while lsa − sets.size > 0 do
42 lsa = lsa − sets.pop_front()
43 Slsa = set[lsa.task_id]
44 add Slsa.lsa to lsa − sets if exists
45 foreach t in lsa.nts do
46 taskt = task[t.task_id]
47 if taskt.id in visited then
48 Continue
49 end
50 if lca_lc(a, taskt.last_step_node) ≠ ASY NC then
51 return true
52 end
53 add set[taskt.id].nt to nt − steps
54 add set[taskt.id].lsa to lsa − sets if exists
55 visited.insert(taskt.id)
56 end
57 end
58
59 if nt − steps.size == 0 then
60 return false
61 end
62 end

Figure 9 Reachability Check
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1 /* Input code */

2 for(int i = 0; i < n; i++)

3 for(int j = 0; j < m; j++)

4 for(int k = 0; k < l; k++)

5 S: C[i, j] += A[i, k] * B[k, j];

1 /* Code to scan written elements */

2 if (l >= 1)

3 for (int c1 = 0; c1 < n; c1 += 1)

4 for (int c2 = 0; c2 < m; c2 += 1)

5 write(C[c1, c2]);

1 /* Code to scan read elements */

2 if (l >= 1)

3 for (int c1 = 0; c1 < n; c1 += 1)

4 for (int c2 = 0; c2 < m; c2 += 1)

5 read(C[c1, c2]);

6 if (m >= 1)

7 for (int c1 = 0; c1 < n; c1 += 1)

8 for (int c2 = 0; c2 < l; c2 += 1)

9 read(A[c1, c2]);

10 if (n >= 1)

11 for (int c1 = 0; c1 < l; c1 += 1)

12 for (int c2 = 0; c2 < m; c2 += 1)

13 read(B[c1, c2]);

Figure 10 Matmul input (left), loops to scan written elements (center), and read elements (right)

read/written elements in the region via affine mapping representation. As an example shown
in Figure 10, the SCoP representation of matmul after delinearization [18] is:

DomainS = {S (i, j, k) ∣ 0 ≤ i < n ∧ 0 ≤ j < m ∧ 0 ≤ k < l}
WriteS = {S (i, j, k) → C [i, j]}

ReadS = {S (i, j, k) → C [i, j]; S (i, j, k) → A[i, k]; S (i, j, k) → B[k, j]}

DomainS is the iteration space of statement S while WriteS and ReadS are respectively
the mappings from statement instance S(i, j, k) to the written and read elements of arrays A,
B, C. The set of elements that are written/read by statement S is computed as the projection
of DomainS via WriteS/ReadS mapping.

WriteS (DomainS ) = {C [i, j] ∣ 0 ≤ i < n ∧ 0 ≤ j < m}
ReadS (DomainS ) = {C [i, j] ∣ 0 ≤ i < n ∧ 0 ≤ j < m; A[i, k] ∣ 0 ≤ i < n ∧ 0 ≤ k < l; B[k, j] ∣ 0 ≤ k < l ∧ 0 ≤ j < m}

Using the above written & read element sets, as with the abstract memory layout [34] as
scanning order, the loop nests that scan all the written and read elements are generated by
the polyhedral code generation method [2].

Layout = {C [c1 , c2 ] → (0 , c1 , c2 ); A[c1 , c2 ] → (1 , c1 , c2 ); B[c1 , c2 ] → (2 , c1 , c2 ); }
Codewrite = codegen(Layout ⋅ WriteS (DomainS ))
Coderead = codegen(Layout ⋅ ReadS (DomainS ))

This polyhedral optimization phase has been implemented as a source-to-source transforma-
tion tool using PET [40] and ISL [39], integrated in the overall LLVM-based instrumentation
pass (Section 5.1). The LLVM transformation pass first identifies the SCoP-convertible code
regions and outputs them as sequential C code with SCoP annotations. Given SCoP region,
the polyhedral phase computes the exact sets of read/written array elements and generates
the loops that scan all elements only once. Finally, the output scanning loops are fed back
to the LLVM instrumentation as the optimized code after array-based redundant check
elimination. The code fragments generated by our polyhedral phase are shown in Figure 10
(center and right).

5 Evaluation

In this section, we evaluate a prototype implementation of the DRDP algorithm to address
the following research questions:

1. Correctness (Section 5.2). How does DRDP compare with state-of-the-art data race
detectors with respect to false positives and false negatives?



F. Jin et al. 23:19

2. Performance (Section 5.4). How does DRDP perform in practice, and how does its time
and space performance depend on dynamic characteristics of task-parallel programs with
promises (DPST height, number of reads/writes, number of join operations, number of
tasks created)?

3. What is the impact of graph traversal order on performance? (Section 5.5).
4. What is the impact of redundant check elimination on performance? (Section 5.6).

5.1 DRDP Implementation
We have implemented DRDP in a prototype race detector for task-parallel programs written
in Habanero-C/C++Library (HCLIB). Notice that any parallel program with promises that
exhibits a determinacy race in the HCLIB version will also exhibit the race if rewritten
with C++ promises. Our prototype can be downloaded here4, which includes a) an LLVM
transform pass for instrumentation, and b) a C++ library for dynamic analysis.

The instrumentation pass is executed along with LLVM. When compiling a task-parallel
program using the Clang/LLVM compiler, the instrumentation pass will inject a call into the
dynamic analysis library after each read and write operation. The library also adds hooks
into runtime to capture the invocations of HCLIB constructs (async, finish, promise). The
library applies a direct-mapping shadow memory implementation [46]. A contiguous memory
region shadows the entire address space, and each memory location’s shadow memory cell
can be efficiently located using pointer arithmetic.

5.2 Correctness Evaluation
DataRaceBench [24] is a micro-benchmark suite designed to gauge the effectiveness of
OpenMP data race detectors. In the latest 1.4.0 version, there are 181 C/C++ micro-
benchmarks that cover the majority of OpenMP constructs. We leveraged DataRaceBench
to conduct a correctness evaluation for DRDP. We found that micro-benchmarks using
OpenMP tasking constructs can be transformed into equivalent HCLIB programs, and task
dependencies specified by the depend clause can be achieved using promises. Therefore, we
picked up all C/C++ micro-benchmarks containing the depend clause except DRB135 and
DRB136. These two micro-benchmarks combine mutexes with the depend clause, which
go beyond the set of programs captured by TP3 and also do not satisfy the determinacy
property of TP3.

The evaluation results for these micro-benchmarks are shown in Table 1. The “yes/no”
suffix in the benchmark name indicates whether the benchmark has a known data race. For
short, we refer to these two groups of benchmarks as yes-benchmarks and no-benchmarks.
The evaluation results are described using four terms in Table 1. FP and FN stand for
false positive and false negative, respectively. A false-positive result means the race detector
reports false alarms on a no-benchmark. A false-negative result means the race detector
misses potential races on a yes-benchmark. The other two terms, TP and TN, stand for true
positive and true negative. TP/TN indicates that the race detector generates the expected
result on a yes-benchmark/no-benchmark.

Evaluation results are shown for five state-of-the-art data-race detection tools, followed
by our work (DRDP). The results for the five other tools were downloaded from the
DataRaceBench GitHub repository [25] and evaluated on the OpenMP versions of the

4 https://github.com/FeiyangJin/hclib/tree/ecoop

ECOOP 2023



23:20 Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises

micro-benchmarks; these results were obtained in 2021 by the authors of DataRaceBench. All
five tools were evaluated with the number of worker threads set to 8. Among the five tools,
Intel Inspector [21], ThreadSanitizer [33], and ROMP [19] are dynamic race detectors, while
Coderrect [36] and LLOV [5] are static race detectors. The DRDP results were obtained by
converting the OpenMP benchmarks to HCLIB task-parallel programs with promises. From
the results, we observe that DRDP is the only tool that does not report any false-positive or
false-negative results for these benchmarks.

We were unable to identify the root cause of false-positive and false-negative results for
ROMP and Intel Inspector since their papers did not provide sufficient information on how
their dynamic analysis supports the depend clause. For ThreadSanitizer, the documentation
states that it applies a fixed-size shadow cell to each memory location. When the shadow
cell is full, ThreadSanitizer will randomly discard a recorded memory access to reserve space
for the latest one. As a result, ThreadSanitizer may miss data races if one of the involved
memory accesses has been discarded from the shadow cell thereby leading to false negatives.
For Coderrect and LLOV, it appears that their support for tasking constructs and the depend

clause is still under development which may explain the false-negative results. We would
also expect false-positive results from these static analysis tools, when evaluated on larger
benchmarks.

Apart from these converted micro-benchmarks from DataRaceBench, we also wrote some
additional tests to check DRDP’s implementation. All converted micro-benchmarks and
additional tests are included in our code repository.

Benchmarks Has Race? Intel Inspector ThreadSanitizer ROMP Coderrect LLOV DRDP

DRB027-taskdependmissing-orig-yes.c Yes TP TP TP TP FN TP
DRB072-taskdep1-orig-no.c No TN TN TN TN TN TN
DRB078-taskdep2-orig-no.c No TN TN TN TN TN TN
DRB079-taskdep3-orig-no.c No TN TN TN TN TN TN
DRB131-taskdep4-orig-omp45-yes.c Yes TP FN FN TP FN TP
DRB132-taskdep4-orig-omp45-no.c No FP TN TN TN TN TN
DRB133-taskdep5-orig-omp45-no.c No FP TN TN TN TN TN
DRB134-taskdep5-orig-omp45-yes.c Yes TP TP FN FN FN TP
DRB173-non-sibling-taskdep-yes.c Yes TP FN TP FN FN TP
DRB174-non-sibling-taskdep-no.c No TN TN FP TN TN TN
DRB175-non-sibling-taskdep2-yes.c Yes TP TP FN FN FN TP
DRB176-fib-taskdep-no.c No FP TN TN TN TN TN
DRB177-fib-taskdep-yes.c Yes TP TP FN FN FN TP

Table 1 Correctness evaluation results on DataRaceBench

5.3 Performance Evaluation Benchmarks and Setup

Since we could not easily locate an existing set of performance benchmarks for task-parallel
programs using promises, we assembled a suite of seven benchmarks from other benchmark
sets as follows. We did not convert the program with the largest lines of code for each set.
We first converted the future-based matmul, sort and strassen (shared by Kastors) programs
from [43] (originally from the Rodinia suite [9]) to use promises. Next, we examined the
Kastors benchmark suite [41] for OpenMP task dependencies and converted two (sparselu,
poisson) to use promises instead to implement the same dependencies. Finally, we converted
two task-parallel OpenMP programs from the BOTS benchmark suite(health, knapsack) [14].

4 https://github.com/LLNL/dataracebench/wiki/Tool-Evaluation-Dashboard
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We only convert two because race detection on pure task-parallel programs has been widely
studied before.

The summary of each benchmark is as follows:

matmul: multiplies two matrices of size 2048 * 2048 with base case size 64 * 64.
sort: sorts an array of size 10000000.
strassen: multiplies two matrices of size 2048 * 2048 by Strassen algorithm.
poisson: solves the Poisson equation (aka jacobi iteration) on the unit square. The
parameters we have are 8192,128,3 for matrix size, block size and number of iterations.
sparselu: computes the LU decomposition of a sparse matrix. The parameters we have
are 128 and 32 for matrix size and submatrix size.
knapsack: calculates the solution of the knapsack problem with 40 items as input.
health: simulates the Colombian health care system. We estimate the running time for
the small model input file given in the source.

The evaluation was conducted on a single-node AMD server machine consisting of a
12-core Ryzen9 3900X running at 3.8GHZ with 128GB memory. All benchmarks were
compiled using -O3 optimizations by Clang/LLVM 14.0.0 running on Ubuntu 18.04.05. We
report each benchmark’s mean execution time and memory usage of 5 runs for base and rd
configurations. “base” is the program running time without race detection; “rd” is the one
with full race detection. The standard deviations for both configurations are within 5%.

5.4 Performance Evaluation Results
The results of our evaluation are shown in Table 2; the corresponding time overheads are in
Figure 11. The first four columns show the running time in seconds and memory usage in
GB, for the two configurations mentioned above. The next column “H” shows the height
of DPST. Columns “Check Write” and “Check Read” are the numbers of shared memory
access conducted for write and read. The following two columns, “Tree Join” and “NT Join”,
are the numbers of tree and non-tree joins in the programs. Finally, column “Task” contains
the number of dynamic tasks created during program execution.

Bench Base
Time

RD
Time

Base
Mem

RD
Mem

H Check
Write

Check
Read

Tree
Join

NT
Join

Task

health 1.51 31.99 0.45 11.64 5 49554260 84975199 2253510 0 2253511
knapsack 1.61 8.00 0.38 4.40 37 3939935 19699117 1969965 0 1969966
matmul 2.52 51.84 0.06 13.44 7 134231771 268477586 28086 0 28087
sort 0.99 40.95 0.18 4.91 15 207671935 261760850 118205 0 118206
strassen 1.37 39.97 0.20 26.12 12 123772570 243307611 29182 16380 45563
sparselu 2.46 69.01 0.04 16.70 4 187379732 362287128 12416 357760 195521
poisson 1.56 71.92 0.80 20.09 4 251658242 654802935 0 122870 106497

Table 2 DRDP performance and statistics

From the experiment statistics, we can make several observations. First, the sum of joins
for sparselu and poisson surpasses the number of tasks; the reason is that each task may
set and get more than one promise. This pattern is not achievable by pure task-parallel
programs. Even the future construct cannot produce more synchronization than the task
number because creating a future requires creating a new task (who is responsible for setting
the future). Moreover, from Table 2 and Figure 11, the race detection time overheads increase
with the complexity of the parallelism pattern of the programs. Strassen, sparselu and poisson,
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with relatively high overheads, use promises without restrictions. The computation graphs
created by the three are much more complex than the others, which is reflected by the
number of non-tree joins generated.

health knapsack matmul sort strassen sparselu poisson
Benchmarks

100

101

102

Ti
m

e 
Ov

er
he

ad
 (x

) 21.13

4.96

20.53

42.13

29.13 28.07

46.10

Time Overhead

Figure 11 DRDP time overhead

5.5 Performance Optimization: Graph Traversal Order
The motivation for selection between depth-first search (dfs) and breadth-first search (bfs)
is summarized in Table 3, which shows traversal counts by different combinations of graph
order (dfs vs. bfs) and iterating order through non-tree joins (back-to-front vs. front-to-back).
Our optimization is extremely helpful: we always get the smallest values for columns “Max
Task Visited” and “Average Task Visited” when doing bfs on the computation graph and
iterating non-tree joins back-to-front. The rows with these two choices are marked in yellow
in Table 3. The column “Max Task Visited” records the max number of tasks traversed in
any run of the reachability check. The column “Average Task Visited” is the average number
of tasks visited for each reachability check that does the graph traversal part. We picked bfs
and back-to-front approach in our race detector and evaluated all benchmarks on them.

Bench Graph Order Input NT Order Min Visited Task Max Visited Task Average Visited Task

strassen dfs 512 16 back to front 1 2 1.43
strassen dfs 512 16 front to back 1 337 11.04
strassen bfs 512 16 back to front 1 1 1.00
strassen bfs 512 16 front to back 1 4 1.13

sparselu dfs 32 8 back to front 1 544 8.85
sparselu dfs 32 8 front to back 1 544 65.72
sparselu bfs 32 8 back to front 1 2 1.07
sparselu bfs 32 8 front to back 1 17 6.08

poisson dfs 2048 128 3 back to front 1 32 9.54
poisson dfs 2048 128 3 front to back 1 32 9.54
poisson bfs 2048 128 3 back to front 1 6 2.84
poisson bfs 2048 128 3 front to back 1 6 2.84

Table 3 Graph traversal order comparison
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5.6 Performance Optimization: Redundant Check Elimination
Another crucial observation is that duplicate read and write checks in the same step are the
bottlenecks for four benchmarks (matmul, strassen sparselu and poisson). The results in
Section 5.4 included the optimized performance for these four benchmarks. In this section,
we study the performance impact of the Redundant Check Elimination optimization for
these four benchmarks; currently this optimization had no impact on the remaining three
benchmarks evaluated in Section 5.4 because they would need interprocedural analysis across
recursive calls, which is currently not performed by our optimizing compiler.

We record runtime statistics for these programs with or without reducing redundant
checks. To measure the time overhead and memory usage, we have to re-evaluate these
benchmarks on a different machine with enough memory. We present the outcomes in Table 4.
The parentheses after some data show the increase/decrease percentage.

Bench Reduce Checks RD Time RD Mem Input Reachability Check Write Check Read Check

matmul No 118.95 (+1038%) 74.77 (+3805%) 1024 1.57E+07 (+0%) 1.68E+07 (+0%) 2.15E+09 (+6299%)
matmul Yes 10.45 1.91 1024 1.57E+07 1.68E+07 3.36E+07

strassen No 19.73 (+233%) 12.88 (+584%) 512 16 1.94E+08 (+496%) 4.10E+06 (-47%) 7.74E+07 (+408%)
strassen Yes 5.93 1.88 512 16 3.26E+07 7.77E+06 1.52E+07

poisson No 214.85 (+135%) 37.87 (+129%) 7424 128 3 1.93E+09 (+84%) 2.07E+08 (-0.02%) 1.36E+09 (+154%)
poisson Yes 91.49 16.56 7424 128 3 1.05E+09 2.07E+08 5.38E+08

sparselu No 1137.68 (+918%) 382.37 (+2189%) 128 32 9.94E+08 (+84%) 5.86E+09 (+3029%) 1.20E+10 (+3219%)
sparselu Yes 111.74 16.70 128 32 5.41E+08 1.87E+08 3.62E+08

Table 4 Performance comparison for reducing redundant checks

All four benchmarks (matmul, strassen, poisson and sparselu) are matrix-based. As
explained in Section 4.4.2, a considerable amount of redundant read checks can be eliminated
in such cases. After the transformation, as shown in Table 4, the running time increases by
135% to 1038% when comparing the optimized version with the unoptimized version.

5.7 Comparison with ThreadSanitizer
Directly evaluating other tools on our benchmarks will typically generate false positives
because they do not consider synchronization constraints imposed by promises. Neverthe-
less, given the widespread use of ThreadSanitizer in practice, we decided to evaluate it on
one of our benchmarks (matmul), which is the only one for which ThreadSanitizer was
able to complete successfully and that too with a smaller input. We set “report_bugs=0,
ignore_uninstrumented_modules=1” for ThreadSanitizer to ensure that it ignores uninstru-
mented code and does not print a race report.

The issue we encountered is that ThreadSanitizer crashes on large inputs for our promise-
based applications. The error messages from these crashes report a stack overflow. Most
likely, it was caused by the fixed-size stack ThreadSanitizer set5, especially since all of our
benchmarks use recursion. We use a smaller input size (128 x 128 for the matmul benchmark)
instead to perform the evaluation.

This benchmark generates 7 tasks at runtime for the given input size, so we reasonably
chose to execute it with 4 worker threads for the ThreadSanitizer case. From the results
in Table 5, we can see that when the input size is small DRDP has a better time performance
and a similar memory performance compared with ThreadSanitizer. This is even though the

5 https://github.com/llvm/llvm-project/blob/2e999b7dd1934a44d38c3a753460f1e5a217e9a5/compiler-
rt/lib/tsan/rtl/tsan_platform_posix.cpp#L53
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Tool Threads Time Memory Time Memory
Overhead Overhead (ms) (MB)

ThreadSanitizer 4 20.26× 34.91× 45.8 180.49
Baseline 4 1.00× 1.00× 2.3 5.17
DRDP 1 6.10× 33.65× 17.6 166.31
Baseline 1 1.00× 1.00× 2.9 4.94

Table 5 Performance comparison between DRDP and ThreadSanitizer

ThreadSanitizer execution uses 4 threads, and the DRDP execution uses 1 thread. (The
Baseline measurements were obtained on the same original version of the benchmark, but
with 4 threads and 1 thread respectively.)

6 Related Work

The concept of determinacy was introduced by Karp and Miller in the late 1960s [23]. More
recently, Dennis et al. reviewed this past work and introduced the concepts of structural and
functional determinism [13]. Related work on the Habanero-Java programming model [7]
classified task-parallel programs into seven categories where each category satisfies or does
not satisfy certain properties, such as data race freedom, deadlock-freedom or determinism.
The paper observed that for some parallel constructs, data race freedom implies determinacy
but no proof was given for that claim. Concurrent Collection (CnC) is a dataflow-based
coordination language, which was proved to be determinate [6]. Data-race free GPU programs
that use barriers for synchronization have been proven to be determinate [10], though the
programming model is data parallel rather than task parallel. Similarly, programs designed
for heterogeneous systems can achieve portability (same input, same result regardless of the
specific backend used) if data-race free [22].

There has been a long history of dynamic determinacy race detection algorithms and
tools based on vector clocks [16,21,33]. A major advantage of the vector clock approach is
that it can be applied to parallel programs with arbitrary parallel constructs, including locks
and transactions (say). However, its major limitation when applied to task-parallel programs
is that it can only provide guarantees on a per-schedule (rather than per-input) basis since it
is not practical for vector clock sizes to be proportional to the number of active tasks.

The serial projection property has been used in past work to perform per-input race
detection via sequential execution for restricted classes of task-parallel programs [4,30]. These
algorithms take advantage of the structural property of computation graphs for fork-join
programs, but they do not support the arbitrary computation graphs that can be generated
by task-parallel programs with promises. Surendran and Sarkar also leveraged the serial
projection property to devise the first per-input dynamic race detector for task-parallel
programs with futures [35]. The futureRD race detector from Utterback et al. [37] supports
a restricted class of futures: it does not allow multiple get operations on a future handle.
In contrast to previous algorithms, DRDP can support general blocking operations in
task-parallel programs with promises. It also illustrates how dynamic race detection can be
performed via sequential execution for task-parallel programs that do not satisfy the serial
projection property.

Labeling techniques have also been used in past work on race detection for task parallelism.
This approach enables reachability checking between two nodes by comparing two labels.
Mellor-Crummey introduced the Offset-Span [26] algorithm as one such approach, in which
the length of the label attached to each task can grow as large as the depth of nested fork
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structures. The SP-Bags [15] structure devised by Feng and Leiserson, and the ESP-Bags [30]
introduced by Raman et al. are also examples of using labeling to record happens-before
relationships.

More recently, there have been some new results on performing per-input dynamic race
detection when executing programs in parallel instead of sequentially. In 2012, Raman et
al. introduced the DPST data structure [31], which runs in parallel and efficiently tracks
happens-before relationships of async-finish constructs. An application of DPST targets
task parallelism in OpenMP has been proposed [45]. Utterback et al. [38] proposed an
asymptotically optimized parallel race detection algorithm for fork-join programs. More
recently, Xu et al. [43] introduced the first known parallel dynamic race detector for task-
parallel programs with futures. However, none of these prior works support per-input
determinacy race detection of task-parallel programs with promises.

7 Conclusions

In this paper, we addressed the problem of dynamic detection of data-races and determinacy-
races in Task-Parallel Programs with Promises (TP3), which support more flexible synchro-
nization patterns than fork-join constructs and futures. We first introduced a featherweight
programming language that captures the semantics of TP3 and provides a basis for formally
defining determinacy using our semantics. This definition subsumes functional determinacy
(same output for same input) and structural determinacy (same computation graph for same
input). We also introduced DRDP, the first-known per-input dynamic determinacy race
detector algorithm for TP3, and demonstrated that it is practical to implement. To the best
of our knowledge, DRDP is the first race detector that executes a task-parallel program
sequentially without requiring the serial-projection property, which is a critical requirement
for TP3 in general. The execution time slowdowns are all under 50×, which is comparable
to overheads incurred by other dynamic race detection and debugging tools used in practice.
The results also highlighted the impact of two important optimizations, traversal order
and redundant check elimination, in obtaining these results. Opportunities for future work
include exploring static and dynamic optimizations to further reduce the overheads in our
implementation of the DRDP, as well as extensions to support determinacy race detection
for promise-like constructs used in heterogeneous parallelism (e.g., CUDA graph) and in
distributed-memory parallelism (e.g., MPI_Request).
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A Proof

▶ Lemma 14. Non-tree joins (nt) and least-significant ancestor (lsa) maintain happens-before
relationships correctly, given the routines in Figure 8.

Proof. For a task T in the disjoint-set D, there are two conditions we may update D’s nt
according to Figure 8.

Lines 19 to 25: when task T gets a promise, we add the empty task created by the promise
setter to D’s nt. In this way, we create dependency from step nodes (those before the set
operation) in the setter task to the remaining step nodes in T .
Line 26 to 38: when finish F ends in task T , we merge all non-tree joins from merged
tasks. The merged tasks are essentially descendants of T and we keep those non-tree
joins in D’s nt.

For a task T in the disjoint-set D, there are two conditions we may update D’s lsa
according to Figure 8.

Lines 1 to 12: when task T is created, if the parent has non-tree joins, we set D’s lsa to
be the parent. Otherwise, we set D’s lsa to be the lsa of parent. This obeys the definition
of lsa (the lowest ancestor that has non-tree joins).
Line 26 to 38: when finish F ends in task T , we keep T ’s lsa and ignore merged tasks’ lsa.
This is valid because merged tasks are essentially descendants of T , so for any merged
task, its lsa is either T , T ’s lsa or one of T ’s descendants. In all cases, the nt and lsa of
D already cover the information.

◀

▶ Theorem 15. If DRDP does not report any determinacy race during an execution of
program P with input ψ, then no execution of P with ψ will have a write-write race on any
memory location r.

Proof. Consider an execution δ of a program P with input ψ in which DRDP is enabled
and does not report any determinacy race.

Suppose that a write-write race, χ, occurs on a memory location r in some execution δ
′

of P with ψ. Let W1 and W2 denote the two steps that write to r resulting in the race in δ′.
Note that the execution δ′ does not have any race until χ occurs. Without loss of generality,
assume W1 writes to r first and W2 writes to r later in δ. We will prove by contradiction
that DRDP must report the race in δ. There are two cases:

1. There are no writes to r between W1 and W2 in δ.
When W1 occurs in δ′, Figure 8 lines 45 - 55 check all readers in reader list and last writer
of r to see if any can execute in parallel with W1. Because χ is the first determinacy race
in δ

′, no race will be reported when W1 occurs. We then save W1 as the last writer to r
in δ

′.
When W1 occurs in δ, because no determinacy race occurs yet, we then save W1 as the
last writer to r in δ.
When W2 occurs in δ, we will run PRECEDE(W1,W2) to check if W1 ↝ W2. In δ

′,
PRECEDE(W1,W2) returns false. In δ, PRECEDE(W1,W2) returns true. We are
going to show it is impossible in δ that true was returned.
In Algorithm 9, we may return true in four places: lines 4, 8, 26, and 51.
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Line 4 cannot be executed in δ because DPST is the same across all executions without
determinacy race. When W2 happens, the related DPST parts that were previously
generated are the same across δ, δ′. As a result, in δ, DRDP cannot return true at line 4.
Line 8 cannot be executed in δ. This line only returns true if the task W1 in is still
active in δ at this point. This means either W2 is W1’s descendant or W1’s task has set
a promise that W2’s task needs. Both conditions cannot be true because in δ

′ we have
W1 ∥W2.
Lines 26 and 51 cannot be executed in δ. We may return in these two lines if we find a
path from W1 to W2 in a graph traversal over the computation graph. The validity is
proved in Lemma 14.

2. There are writes to r by steps Wi ... Wj between W1 and W2 in δ.
In δ

′, the happens-before relationship must be W1 ↝ Wi ↝ Wi+1 ↝ . . .Wj−1 ↝ Wj

because χ is the first race in δ
′. As W1 ∥ W2, we have Wj ∥ W2, so Wj and W2 is also

a pair of write that leads to a race. Because the related computation graph parts are
the same across data-race free execution, the same happens-before relationship exists in
δ. When W2 occurs in δ, the shadow memory has Wj as the last writer. We will run
PRECEDE(Wj ,W2) to check if Wj ↝ W2. In δ, PRECEDE(Wj ,W2) cannot return
true, which can be proved similarly as part 1. This is a contradiction with the statement
DRDP does not report any race in δ.

◀

▶ Theorem 16. If DRDP does not report any data race during an execution of program P

with input ψ, then no execution of P with ψ will have a read-write determinacy race on any
memory location r.

Proof. Consider an execution δ of a program P with input ψ in which DRDP is enabled
and does not report any determinacy race.

Suppose that a read-write race, χ, occurs on a memory location r in some execution δ′ of
P with ψ. Let R1 and W1 denote the two steps that read and write r resulting in the race in
δ
′. Because this is a read-write data race, R1 occurs before W1 in δ′. Note that the execution
δ
′ does not have any race until χ occurs. We will prove by contradiction that DRDP must

report the race in δ. There are two cases:

1. R1 executes before W1 in δ.
a. There are no writes of r between R1 and W1 in δ.

When R1 occurs in δ, we check race with the last write. We then save R1 to the reader
list of r in δ.
When W1 occurs in δ, we will run PRECEDE(R1,W1) to check if R1 ↝W1. The call
returns returns true in δ. This is impossible. The reasoning is similar to Theorem 15
part 1.

b. There are writes of r by steps Wi . . .Wj between R1 and W1 in δ.
Theorem 15 states that if there is a write-write race in the program P, DRDP will
always report it. This means if there exists a race in any pair of writers in Wi . . .Wj ,W1,
DRDP must find it. Because in δ execution, DRDP does not report any write-write
race, we must have Wi ↝ Wi+1 ↝ . . . ↝ Wj−1 ↝ Wj ↝ W1. This relationship is the
same in δ

′.
As a result, we can conclude in δ′, we have R1 ∥Wi, otherwise there cannot be a race
between R1 and W1 in δ

′. In δ, when Wi occurs, DRDP must report the race. The
reasoning is similar to part a. This is a contradiction with the statement that DRDP
does not report any race in δ.
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2. W1 executes before R1 in δ.
a. There are no writes of r between W1 and R1 in δ.

The proof is similar to Theorem 15 part 1. We omit the details.
b. There are writes of r by steps Wi . . .Wj between W1 and R1 in δ.

The proof is similar to Theorem 15 part 2. We omit the details.
◀

▶ Theorem 17. If DRDP does not report any determinacy race during an execution of
program P with input ψ, then no execution of P with ψ will have a write-read determinacy
race on any memory location r.

Proof. We omit the proof because it is similar to proof for Theorem 16. ◀

▶ Theorem 18. If DRDP reports a determinacy race on r during an execution of program
P with input ψ, then at least one execution of P with ψ will have this determinacy race on r.

Proof. In Algorithm 9, we may return true in four places: lines 4, 8, 26, and 51. If DRDP
reports a write-write race or a read-write race or a write-read race, we know none of the lines
is executed. The validity of the check is explained in Theorem 15 part 1.

From the definition of determinacy race and the fact DRDP reports a race, we know at
least one execution of program P will show the race. ◀

▶ Theorem 19. The race detection algorithm described in Figure 8 and 9 is sound and
precise.

Proof. Theorem 15,16,17 show that the algorithm is sound for a given input. Theorem 18
proves that the algorithm is precise for a given input. ◀
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